110 research outputs found

    Solar wind turbulence at 0.72 AU and solar minimum

    Get PDF
    We investigate Venus Express (VEX) observations of magnetic field fluctuations performed systematically in the solar wind at 0.72 Astronomical Units (AU), between 2007 and 2009, during the deep minimum of the solar cycle 24. The Power Spectral Densities (PSD) of the magnetic field components have been computed for the time intervals that satisfy data integrity criteria and have been grouped according to the type of wind, fast and slow defined for speeds larger and respectively smaller than 450 km/s. The PSDs show higher levels of power for the fast than for the slow wind. The spectral slopes estimated for all PSDs in the frequency range 0.005-0.1 Hz exhibit a normal distribution. The average value of the trace of the spectral matrix is -1.60 for fast solar wind and -1.65 for slow wind. Compared to the corresponding average slopes at 1 AU, the PSDs are shallower at 0.72 AU for slow wind conditions suggesting a steepening of the solar wind spectra between Venus and Earth. No significant time variation trend is observed for the spectral behavior of both slow and fast wind

    Oxygen Ion Escape at Venus Associated With Three-Dimensional Kelvin-Helmholtz Instability

    Get PDF
    How oxygens escape from Venus has long been a fundamental but controversial topic in the planetary research. Among various key mechanisms, the Kelvin-Helmholtz instability (KHI) has been suggested to play an important role in the oxygen ion escape from Venus. Limited by either scarce in-situ observations or simplified theoretical estimations, the mystery of oxygen ion escape process associated with KHI is still unsettled. Here we present the first three-dimensional configuration of KHI at Venus with a global multifluid magnetohydrodynamics model, showing a significantly fine structure and evolution of the KHI. KHI mainly occurred at the low latitude boundary layer if defining the interplanetary magnetic field-perpendicular plane as the equatorial plane, resulting in escaping oxygen ions through mixing with the solar wind at the Venusian boundary layer, with an escape rate around 4 × 1024 s−1. The results provide new insights into the basic physical process of atmospheric loss at other unmagnetized planet

    Responses of the field-aligned currents in the plasma sheet boundary layer to a geomagnetic storm

    Get PDF
    Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground. As an important medium of momentum and energy transport among the solar wind, magnetosphere, and ionosphere, field-aligned currents (FACs) can also be strengthened in storm times. This study shows the responses of FACs in the plasma sheet boundary layer (PSBL) observed by the Magnetospheric Multiscale (MMS) spacecraft in different phases of a large storm that lasted from May 27, 2017, to May 29, 2017. Most of the FACs were carried by electrons, and several FACs in the storm time also contained sufficient ion FACs. The FAC magnitudes were larger in the storm than in the quiet period, and those in the main phase were the strongest. In this case, the direction of the FACs in the main phase showed no preference for tailward or earthward, whereas the direction of the FACs in the recovery phase was mostly tailward. The results suggest that the FACs in the PSBL are closely related to the storm and could be driven by activities in the tail region, where the energy transported from the solar wind to the magnetosphere is stored and released as the storm is evolving. Thus, the FACs are an important medium of energy transport between the tail and the ionosphere, and the PSBL is a significant magnetosphere–ionosphere coupling region in the nightside

    Proton temperature anisotropies in the plasma environment of Venus

    Get PDF
    Velocity distribution functions (VDFs) are a key to understanding the interplay between particles and waves in a plasma. Any deviation from an isotropic Maxwellian distribution may be unstable and result in wave generation. Using data from the ion mass spectrometer IMA (Ion Mass Analyzer) and the magnetometer (MAG) onboard Venus Express, we study proton distributions in the plasma environment of Venus. We focus on the temperature anisotropy, that is, the ratio between the proton temperature perpendicular (T ⊥) and parallel (T ‖) to the background magnetic field. We calculate average values of T ⊥ and T ‖ for different spatial areas around Venus. In addition we present spatial maps of the average of the two temperatures and of their average ratio. Our results show that the proton distributions in the solar wind are quite isotropic, while at the bow shock stronger perpendicular than parallel heating makes the downstream VDFs slightly anisotropic (T ⊥/T ‖ > 1) and possibly unstable to generation of proton cyclotron waves or mirror mode waves. Both wave modes have previously been observed in Venus's magnetosheath. The perpendicular heating is strongest in the near-subsolar magnetosheath (T ⊥/T ‖≈3/2), which is also where mirror mode waves are most frequently observed. We believe that the mirror mode waves observed here are indeed generated by the anisotropy. In the magnetotail we observe planetary protons with largely isotropic VDFs, originating from Venus's ionosphere

    Halophyte Nitraria billardieri CIPK25 promotes photosynthesis in Arabidopsis under salt stress

    Get PDF
    The calcineurin B-like (CBL)-interacting protein kinases (CIPKs), a type of plant-specific genes in the calcium signaling pathway, function in response to adverse environments. However, few halophyte derived CIPKs have been studied for their role in plant physiological and developmental adaptation during abiotic stresses, which inhibits the potential application of these genes to improve environmental adaptability of glycophytes. In this study, we constructed Nitraria billardieri CIPK25 overexpressing Arabidopsis and analyzed the seedling development under salt treatment. Our results show that Arabidopsis with NbCIPK25 expression exhibits more vigorous growth than wild type plants under salt condition. To gain insight into the molecular mechanisms underlying salt tolerance, we profiled the transcriptome of WT and transgenic plants via RNA-seq. GO and KEGG analyses revealed that upregulated genes in NbCIPK25 overexpressing seedlings under salt stress are enriched in photosynthesis related terms; Calvin-cycle genes including glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) are significantly upregulated in transgenic plants, which is consistent with a decreased level of NADPH (GAPDH substrate) and increased level of NADP+. Accordingly, NbCIPK25 overexpressing plants exhibited more efficient photosynthesis; soluble sugar and proteins, as photosynthesis products, showed a higher accumulation in transgenic plants. These results provide molecular insight into how NbCIPK25 promotes the expression of genes involved in photosynthesis, thereby maintaining plant growth under salt stress. Our finding supports the potential application of halophyte-derived NbCIPK25 in genetic modification for better salt adaptation
    • …
    corecore