128 research outputs found

    Overcoming the roadblocks to cardiac cell therapy using tissue engineering

    Get PDF
    Transplantations of various stem cells or their progeny have repeatedly improved cardiac performance in animal models of myocardial injury; however, the benefits observed in clinical trials have been generally less consistent. Some of the recognized challenges are poor engraftment of implanted cells and, in the case of human cardiomyocytes, functional immaturity and lack of electrical integration, leading to limited contribution to the heart’s contractile activity and increased arrhythmogenic risks. Advances in tissue and genetic engineering techniques are expected to improve the survival and integration of transplanted cells, and to support structural, functional, and bioenergetic recovery of the recipient hearts. Specifically, application of a prefabricated cardiac tissue patch to prevent dilation and to improve pumping efficiency of the infarcted heart offers a promising strategy for making stem cell therapy a clinical reality. [Display omitted

    A three-dimensional culture system for generating cardiac spheroids composed of cardiomyocytes, endothelial cells, smooth-muscle cells, and cardiac fibroblasts derived from human induced-pluripotent stem cells

    Get PDF
    Cardiomyocytes (CMs), endothelial cells (ECs), smooth-muscle cells (SMCs), and cardiac fibroblasts (CFs) differentiated from human induced-pluripotent stem cells (hiPSCs) are the fundamental components of cell-based regenerative myocardial therapy and can be used as in-vitro models for mechanistic studies and drug testing. However, newly differentiated hiPSC-CMs tend to more closely resemble fetal CMs than the mature CMs of adult hearts, and current techniques for improving CM maturation can be both complex and labor-intensive. Thus, the production of CMs for commercial and industrial applications will require more elementary methods for promoting CM maturity. CMs tend to develop a more mature phenotype when cultured as spheroids in a three-dimensional (3D) environment, rather than as two-dimensional monolayers, and the activity of ECs, SMCs, and CFs promote both CM maturation and electrical activity. Here, we introduce a simple and reproducible 3D-culture–based process for generating spheroids containing all four cardiac-cell types (i.e., cardiac spheroids) that is compatible with a wide range of applications and research equipment. Subsequent experiments demonstrated that the inclusion of vascular cells and CFs was associated with an increase in spheroid size, a decline in apoptosis, an improvement in sarcomere maturation and a change in CM bioenergetics

    Bioenergetic Abnormalities Associated with Severe Left Ventricular Hypertrophy

    Get PDF
    Abstract Transmurally localized 31P-nuclear magnetic resonance spectroscopy (NMR) was used to study the effect of severe pressure overload left ventricular hypertrophy (LVH) on myocardial high energy phosphate content. Studies were performed on 8 normal dogs and 12 dogs with severe left ventricular hypertrophy produced by banding the ascending aorta at 8 wk of age. Spatially localized 31P-NMR spectroscopy provided measurements of the transmural distribution of myocardial ATP, phosphocreatine (CP), and inorganic phosphate (Pi); spectra were calibrated from measurements of ATP content in myocardial biopsies using HPLC. Blood flow was measured with microspheres. In hypertrophied hearts during basal conditions, ATP was decreased by 42%, CP by 58%, and the CP/ATP ratio by 32% in comparison with normal. Increasing myocardial blood flow with adenosine did not correct these abnormalities, indicating that they were not the result of persistent hypoperfusion. Atrial pacing at 200 and 240 beats per min caused no change in high energy phosphate content in normal hearts but resulted in further CP depletion with Pi accumulation in the inner left ventricular layers of the hypertrophied hearts. These changes were correlated with redistribution of blood flow away from the subendocardium in LVH hearts. These findings demonstrate that high energy phosphate levels and the CP/ATP ratio are significantly decreased in severe LVH. These abnormalities are proportional to the degree of hypertrophy but are not the result of persistent abnormalities of myocardial perfusion. In contrast, depletion of CP and accumulation of Pi during tachycardia in LVH are closely related to the pacing-induced perfusion abnormalities and likely reflect subendocardial ischemia. (J. Clin. Invest. 1993. 92:993-100

    Determinants of career aspirations of medical students in southern China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With recent changes in both the Chinese medical system and compensation of medical doctors, the career aspirations of Chinese medical students have become more diverse. Shantou University Medical College has conducted evaluations and instituted programs to enhance student preparedness to enter a variety of medical careers.</p> <p>Methods</p> <p>A survey was conducted with 85 students to evaluate medical career aspirations and their association with family background, personal skills, English language proficiency, and interest in biomedical research, which were considered as possible factors affecting their career interest.</p> <p>Results</p> <p>Chinese students aspire to traditional as well as nontraditional medical careers. A significant minority of students are now interested in nontraditional careers such as medical teaching or research. However, poor proficiency in the English language and lack of computer skills may limit their academic and career opportunities.</p> <p>Conclusion</p> <p>Career aspirations have changed among medical undergraduates. Although many wish to pursue a traditional clinical doctor career, many are interested in research and teaching careers. Factors such as family background, personal characteristics, school mentoring, and extracurricular support may play a role.</p

    Factors associated with length of stay and the risk of readmission in an acute psychiatric inpatient facility: a retrospective study

    Get PDF
    OBJECTIVE: This study was to investigate factors influencing the length of stay and predictors for the risk of readmission at an acute psychiatric inpatient unit. METHOD: Two comparative studies were embedded in a retrospective cross-sectional clinical file audit. A randomly selected 226 episodes of admissions including 178 patients during a twelve-month period were reviewed. A total of 286 variables were collected and analysed. A case control study was employed in the study of length of stay. A retrospective cohort study was used to investigate the predictors for the risk of readmission. RESULTS: Logistic regression analyses showed that 10 variables were associated with length of stay. Seclusion during the index admission, accommodation problems and living in an area lacking community services predicted longer stay. During the follow-up period 82 patients (46%) were readmitted. Cox regression analyses showed 9 variables were related to the risk of readmission. Six of these variables increased the risk of readmission, including history of previous frequent admission, risk to others at the time of the index admission and alcohol intoxication. More active and assertive treatment in the community post-discharge decreased the risk of readmission. CONCLUSIONS: Length of stay is multifactorially determined. Behavioural manifestations of illness and lack of social support structures predicted prolonged length of stay. Good clinical practice did not necessarily translate to a shorter length of stay. Therefore, length of stay is predictable, but not readily modifiable within the clinical domain. Good clinical practice within the community following discharge likely reduces the risk of readmission. Quality of inpatient care does not influence the risk of readmission, which therefore raises a question about the validity of using the rate of readmission as an outcome measure of psychiatric inpatient care

    Fetal Myocardium in the Kidney Capsule: An In Vivo Model of Repopulation of Myocytes by Bone Marrow Cells

    Get PDF
    Debate surrounds the question of whether the heart is a post-mitotic organ in part due to the lack of an in vivo model in which myocytes are able to actively regenerate. The current study describes the first such mouse model — a fetal myocardial environment grafted into the adult kidney capsule. Here it is used to test whether cells descended from bone marrow can regenerate cardiac myocytes. One week after receiving the fetal heart grafts, recipients were lethally irradiated and transplanted with marrow from green fluorescent protein (GFP)-expressing C57Bl/6J (B6) donors using normal B6 recipients and fetal donors. Levels of myocyte regeneration from GFP marrow within both fetal myocardium and adult hearts of recipients were evaluated histologically. Fetal myocardium transplants had rich neovascularization and beat regularly after 2 weeks, continuing at checkpoints of 1, 2, 4, 6, 8 and12 months after transplantation. At each time point, GFP-expressing rod-shaped myocytes were found in the fetal myocardium, but only a few were found in the adult hearts. The average count of repopulated myocardium with green rod-shaped myocytes was 996.8 cells per gram of fetal myocardial tissue, and 28.7 cells per adult heart tissue, representing a thirty-five fold increase in fetal myocardium compared to the adult heart at 12 months (when numbers of green rod-shaped myocytes were normalized to per gram of myocardial tissue). Thus, bone marrow cells can differentiate to myocytes in the fetal myocardial environment. The novel in vivo model of fetal myocardium in the kidney capsule appears to be valuable for testing repopulating abilities of potential cardiac progenitors
    corecore