31 research outputs found

    Anisotropy of thermal conductivity oscillations in relation to the Kitaev spin liquid phase

    Full text link
    In the presence of external magnetic field, the Kitaev model could either hosts gapped topological anyon or gapless Majorana fermions. In α\alpha-RuCl3_3, the gapped and gapless cases are only separated by a thirty-degree rotation of the in-plane magnetic field vector. The presence/absence of the spectral gap is key for understanding the thermal transport behavior in α\alpha-RuCl3_3. Here, we study the anisotropy of the oscillatory features of thermal conductivity in α\alpha-RuCl3_3. We examine the oscillatory features of thermal conductivities (k//a, k//b) with fixed external fields and found distinct behavior for the gapped (B//a) and gapless (B//b) scenarios. Furthermore, we track the evolution of thermal resistivity (λa\lambda_{a}) and its oscillatory features with the rotation of in-plane magnetic fields from B//b to B//a. The thermal resistivity λ(B,θ)\lambda (B,\theta) display distinct rotational symmetries before and after the emergence of the field induced Kitaev spin liquid phase. These experiment data suggest close correlations between the oscillatory features of thermal conductivity, the underlying Kitaev spin liquid phase and the fermionic excitation it holds

    Construction of ionic liquid-Pd/C based bifunction catalysts for the synthesis of UV-P

    No full text
    Adding light stabilizers to polymeric materials can inhibit or delay the light aging effect and improve the light resistance of materials. 2-(2′-Hydroxy-5′-methylphenyl) benzotriazole (UV-P), as a typical benzotriazole ultraviolet absorber, is widely used in various polymer synthetic materials and products owning to its outstanding oil resistance, color change resistance and low volatility. Currently, it is of great theoretical and practical significance to develop an environmentally friendly method to produce UV-P. Here, we introduce ionic liquids, tetra-butyl ammonium hydroxide, into the palladium-based catalyst, design a “transfer hydrogenation site - alkaline site” duel active center system, and investigate the physical and chemical properties and possible mechanism of this bifunction catalyst system. Such heterogeneous catalytic transfer hydrogenation method can remain 100% conversion and 93.86% selectivity. This bifunction catalyst also shows an outstanding stability when it was used for ten times, proving a green and efficient transfer hydrogenation method for the synthesis of UV-P

    Topological Nernst and topological thermal Hall effect in rare-earth kagome ScMn6_6Sn6_6

    Full text link
    Thermal and thermoelectric measurements are known as powerful tools to uncover the physical properties of quantum materials due to their sensitivity towards the scattering and chirality of heat carriers. We use these techniques to confirm the presence of momentum and real-space topology in ScMn6_6Sn6_6. There is an unconventional dramatic increase in the Seebeck coefficient on entering the transverse conical spiral (TCS) below TT = 200 K suggesting an unusual scattering of heat carriers. In addition, the observed anomalous thermal Hall effect and the anomalous Nernst effect indicates non-zero Berry curvature in kk-space. Furthermore, we identify a significant topological contribution to the thermal Hall and Nernst signals in the TCS phase revealing the impacts of real-space Berry curvature. We discuss the presence of topological thermal Hall effect and topological Nernst effect for the first time in the diverse HfFe6_6Ge6_6 family. This study illustrates the importance of transverse thermal and thermoelectric measurements to investigate the origin of topological transport in the non-coplanar magnetic phases in this family of kagome metals.Comment: 9 pages, 6 figure

    A physiological function of inflammation-associated SerpinB2 is regulation of adaptive immunity

    No full text
    SerpinB2 (plasminogen activator inhibitor-2) is widely described as an inhibitor of urokinase plasminogen activator; however, SerpinB2(-/-) mice show no detectable increase in urokinase plasminogen activator activity. In this study, we describe an unexpected immune phenotype in SerpinB2(-/-) mice. After immunization with OVA in CIA, SerpinB2(-/-) mice made approximate to 6-fold more IgG2c and generated approximate to 2.5-fold more OVA-specific IFN-gamma-secreting T cells than SerpinB2(+/+) littermate controls. In SerpinB2(+/+) mice, high inducible SerpinB2 expression was seen at the injection site and in macrophages low levels in draining lymph nodes and conventional dendritic cells, and no expression was seen in plasmacytoid dendritic, B, T, or NK cells. SerpinB2(-/-) macrophages promoted greater IFN-gamma secretion from wild-type T cells in vivo and in vitro and, when stimulated with anti-CD40/IFN-gamma or cultured with wild-type T cells in vitro, secreted more Th1-promoting cytokines than macrophages from littermate controls. Draining lymph node SerpinB2(-/-) myeloid APCs similarly secreted more Th1-promoting cytokines when cocultured with wild-type T cells. Regulation of Th1 responses thus appears to be a physiological function of inflammation-associated SerpinB2; an observation that may shed light on human inflammatory diseases like pre-eclampsia, lupus, asthma, scleroderma, and periodontitis, which are associated with SerpinB2 polymorphisms or dysregulated SerpinB2 expression. The Journal of Immunology, 2010, 184: 2663-2670
    corecore