242 research outputs found
Optimal Allocation of Changing Station for Electric Vehicle Based on Queuing Theory
Electric vehicle as the main development direction of the future automotive industry, has gained attention worldwide. The rationality of the planning and construction of the power station, as the foundation of energy supply, is an important premise for the development of electric vehicles. In full consideration of the electric demand and electricity consumption, this paper proposes a new construction mode in which charging station and centralized charging station are appropriately combined and presents a location optimization model. Not only can this model be applied to determine the appropriate location for the power station, but it can use the queuing theory to determine the optimal number of power equipment, with which we can achieve the minimum costs. Finally, taking a certain city as an example, the optimum plan for power station is calculated by using this model, which provides an important reference for the study of electric vehicle infrastructure planning
Structural responses of secondary lining of high-speed railway tunnel excavated in loess ground
To systematically study the mechanical properties and structural responses of the secondary lining for high-speed railway tunnels excavated in loess ground, on-site monitoring was performed to measure the contact pressure between the primary lining and secondary lining. It is found that the contact pressure reaches its first peak value when the tunnel formwork carriage is removed. The load acting on secondary lining is in the form of deformation pressure, which is different from the loose pressure prescribed in the China Tunnel Design Standard. The results obtained from this study enhance our understanding towards the mechanical characteristics of secondary lining for high-speed railway tunnels and are also beneficial to secondary lining design.published_or_final_versio
Geotechnical monitoring and safety assessment of large-span triple tunnels using drilling and blasting method
The excavation of large-span triple tunnels using drilling and blasting method inevitably causes complicated load transfer effects and induces potentially damaging ground vibrations. In this study, the structural responses (including the surrounding rock pressure, normal-contact pressure between the primary and secondary linings, internal forces in the secondary lining) and the seismic responses (including peak particle velocity and corner frequency), are systematically recorded. It is found that the first-excavated left tunnel is influenced heavily by the excavation of the last-excavated middle tunnel, whereas it is hardly affected by the excavation of the second-excavated right tunnel. The load carried by the primary lining is approximately three times as that carried by the secondary lining. The middle tunnel was in the least desirable state due to the formation of the large Protodyakonov’s equilibrium arch (PEA). Based on timely feedback of the comprehensive monitoring system, a series of vibration-reducing techniques were applied and effectively guaranteed safety during blasting construction. By referring to Chinese codes, the minimum safety factor of the secondary lining is 1.3; the maximum PPV (0.15 cm/s) is lower than the allowable value; and the corner frequency (40-140 Hz) will not cause resonant vibration of the Great Wall
R3D-SWIN:Use Shifted Window Attention for Single-View 3D Reconstruction
Recently, vision transformers have performed well in various computer vision
tasks, including voxel 3D reconstruction. However, the windows of the vision
transformer are not multi-scale, and there is no connection between the
windows, which limits the accuracy of voxel 3D reconstruction. Therefore, we
propose a voxel 3D reconstruction network based on shifted window attention. To
the best of our knowledge, this is the first work to apply shifted window
attention to voxel 3D reconstruction. Experimental results on ShapeNet verify
our method achieves SOTA accuracy in single-view reconstruction.Comment: being consider to patter recognition letter
Acute and acute-on-chronic kidney injury of patients with decompensated heart failure: impact on outcomes
BACKGROUND: Acute worsening of renal function, an independent risk factor for adverse outcomes in acute decompensated heart failure (ADHF), occurs as a consequence of new onset kidney injury (AKI) or acute deterioration of pre-existed chronic kidney disease (CKD) (acute-on-chronic kidney injury, ACKI). However, the possible difference in prognostic implication between AKI and ACKI has not been well established. METHODS: We studied all consecutive patients hospitalized with ADHF from 2003 through 2010 in Nanfang Hospital. We classified patients as with or without pre-existed CKD based on the mean estimated glomerular filtration rate (eGFR) over a six-month period before hospitalization. AKI and ACKI were defined by RIFLE criteria according to the increase of the index serum creatinine. RESULTS: A total of 1,005 patients were enrolled. The incidence of ACKI was higher than that of AKI. The proportion of patients with diuretic resistance was higher among patients with pre-existed CKD than among those without CKD (16.9% vs. 9.9%, P = 0.002). Compared with AKI, ACKI was associated with higher risk for in-hospital mortality, long hospital stay, and failure in renal function recovery. Pre-existed CKD and development of acute worsening of renal function during hospitalization were the independent risk factors for in-hospital death after adjustment by the other risk factors. The RIFLE classification predicted all-cause and cardiac mortality in both AKI and ACKI. CONCLUSIONS: Patients with ACKI were at greatest risk of adverse short-term outcomes in ADHF. Monitoring eGFR and identifying CKD should not be ignored in patients with cardiovascular disease
Research on the measurement and characteristics of museum visitors’ emotions under digital technology environment
What kind of emotional experience does the application of digital technology in museums create for museum visitors? Can it be measured accurately and in real-time? What are its characteristics? This paper utilizes EEG signals and the PAD emotional model as research methods to conduct real-time digital measurement of visitors’ emotional experiences at Tianyi Pavilion Museum in Ningbo City, focusing on their physiological and psychological reactions.The results show that: (1) In a quasi-experimental environment, linear SVM, polynomial kernel SVM, and Gaussian kernel SVM can all accurately classify the emotional tendencies of museum visitors with success rate of over 72%. (2) In a quasi-experimental environment, it is feasible and reliable to measure the immediate digital emotional experiences of visitors using EEG signals and the PAD emotion model. Based on this, we can summarize the characteristics of emotional tendencies among different demographic groups of museum visitors
Congestive Heart Failure Exhibited Higher BMI With Lower Energy Intake and Lower Physical Activity Level: Data From the National Health and Examination Nutrition Survey
Background: Despite that nutritional deficiency existed in congestive heart failure (CHF), there is a large amount of CHF patients suffering from obesity. This study aimed to identify the differences for increased BMI or obesity in CHF patients.Methods: This cross-sectional study included adults from the National Health and Nutrition Examination Survey 2007–2016. Differences were compared between CHF participants vs. non-CHF participants, and BMI ≥ 30 kg/m2 vs. BMI < 30 kg/m2 CHF participants.Results: CHF participants were with higher BMI, lower energy and macronutrient intake, lower physical activity level and longer rest time, and lower hematocrit and hemoglobin level (all P < 0.05) than non-CHF participants. The prevalence of BMI ≥ 30 kg/m2 in participants with CHF was 53.48%. There was no significant difference observed in energy and macronutrient intake between CHF participants with BMI ≥ 30 kg/m2 or <30 kg/m2. The water intake (P = 0.032), sedentary time (P = 0.002), and hematocrit (P = 0.028) were significantly different between CHF with BMI ≥ 30 kg/m2 and with <30 kg/m2.Conclusion: Compared with non-CHF participants, CHF participants exhibited higher BMI with lower energy and macronutrient intake, lower physical activity level, longer rest time, and hemodilution with lower hematocrit and hemoglobin level. Among CHF participants with BMI ≥ 30 kg/m2, higher sedentary time and hematocrit were observed
Recommended from our members
Heterogeneous N2O5 reactions on atmospheric aerosols at four Chinese sites : improving model representation of uptake parameters
Heterogeneous reactivity of N2O5 on aerosols is a critical parameter in assessing NOx fate, nitrate production, and particulate chloride activation. Accurate measurement of its uptake coefficient (gamma N2O5) and representation in air quality models are challenging, especially in the polluted environment. With an in situ aerosol flow-tube system, the gamma N2O5 was directly measured on ambient aerosols at two rural sites in northern and southern China. The results were analyzed together with the gamma N2O5 derived from previous field studies in China to obtain a holistic picture of gamma N2O5 uptake and the influencing factors under various climatic and chemical conditions. The field-derived or measured gamma N2O5 was generally promoted by the aerosol water content and suppressed by particle nitrate. Significant discrepancies were found between the measured gamma N2O5 and that estimated from laboratory-determined parameterizations. An observation-based empirical parameterization was derived in the present work, which better reproduced the mean value and variability of the observed gamma N2O5. Incorporating this new parameterization into a regional air quality model (WRF-CMAQ) has improved the simulation of N2O5, nitrogen oxides, and secondary nitrate in the polluted regions of China.Peer reviewe
Characterization of Side Populations in HNSCC: Highly Invasive, Chemoresistant and Abnormal Wnt Signaling
Side Population (SP) cells, a subset of Hoechst-low cells, are enriched with stem cells. Originally, SP cells were isolated from bone marrow but recently have been found in various solid tumors and cancer cell lines that are clonogenic in vitro and tumorigenic in vivo. In this study, SP cells from lymph node metastatic head and neck squamous cell carcinoma (HNSCC) cell lines were examined using flow cytometry and Hoechst 3342 efflux assay. We found that highly metastatic HNSCC cell lines M3a2 and M4e contained more SP cells compared to the low metastatic parental HNSCC cell line 686LN. SP cells in HNSCC were highly invasive in vitro and tumorigenic in vivo compared to non-SP cells. Furthermore, SP cells highly expressed ABCG2 and were chemoresistant to Bortezomib and etoposide. Importantly, we found that SP cells in HNSCC had abnormal activation of Wnt/β-catenin signaling as compared to non-SP cells. Together, these findings indicate that SP cells might be a major driving force of head and neck tumor formation and metastasis. The Wnt/β-catenin signaling pathway may be an important target for eliminating cancer stem cells in HNSCC
- …