342 research outputs found

    Effect of side edge distance and concrete materials on corrosion in precast prestressed concrete panels

    Get PDF
    This study involved the spalling problem found in some partial-depth precast prestressed bridge decks in the state of Missouri. Recently, panels of several bridges have exhibited corrosion of the prestressing steel tendons causing concrete spalling at the edges of panels. Some of the exposed tendons are corroded to the point of rupture. The effect of factors, namely concrete side edge distance and concrete material type, on steel corrosion in chloride-contaminated reinforced concrete was investigated in this study. Wet-dry cycle tests and accelerated corrosion tests were carried out on sixty-three specimens designed with three different side edge distances and three different concrete mixture types. Visual inspection and gravimetric study were performed on all test specimens. For specimens subjected to wet-dry cycle test, corrosion potential measurement, electrical resistivity measurement, and chloride content analysis were also conducted. For specimens subjected to accelerated corrosion test, time from corrosion initiation to corrosion cracking was used to verify the effectiveness of various models in predicting cracking time with low impressed current. Findings indicate that, for specimens of constant thickness, concrete deterioration and tendon corrosion decreased as the side edge distance increased. In addition, experimental results showed little difference in deterioration levels between specimens of concrete with fibers and the control specimens with normal concrete. Higher levels of deterioration were found in specimens with corrosion inhibitor compared to the control specimens with normal concrete --Abstract, page iii

    Quantification of chemotaxis-related alkane accumulation in Acinetobacter baylyi using Raman microspectroscopy

    Get PDF
    Alkanes are one of the most widespread contaminants in the natural environment, primarily as a consequence of biological synthesis and oil spills. Many indigenous microbes metabolize alkanes, and alkane chemotaxis and accumulation in some strains have been identified. For the first time, we apply Raman microspectroscopy to identify such chemotaxis and bioaccumulation, and quantify the alkane concentrations via spectral alterations. Raman spectral alterations were only found for the alkane chemo-attractant bacteria Acinetobacter baylyi ADP1, not for Pseudomonas fluorescence, which exhibits limited chemotaxis towards alkane. The significant alterations were attributed to the strong chemotactic ability of A. baylyi enhancing the capture and accumulation of alkane molecules on cell membranes or cellular internalization. Spectral fingerprints of A. baylyi significantly altered after 1-h exposure to pure alkanes (dodecane or tetradecane) and alkane mixtures (mineral oil or crude oil), but not monocyclic aromatic hydrocarbons (MAHs) or polycyclic aromatic hydrocarbons (PAHs). A semi-log linear regression relationship between Raman spectral alterations and alkane concentrations showed its feasibility in quantifying alkane concentration in environmental samples. Pure alkanes or alkane mixtures exhibited different limits of detection and regression slopes, indicating that the chemotaxis and bioaccumulation of alkanes in A. baylyi is dependent on the carbon chain length. This work provides a novel biospectroscopy approach to characterize alkane chemotaxis and/or bioaccumulation, and has immense potential for fast and high-throughput screening bacterial chemotaxis

    Novel phenanthrene-degrading bacteria identified by DNA-stable isotope probing

    Get PDF
    Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- And 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE- 1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ

    Assessing the impacts of phosphorus inactive clay on phosphorus release control and phytoplankton community structure in eutrophic lakes

    Get PDF
    Addressing the challenge that phosphorus is the key factor and cause for eutrophication, we evaluated the phosphorus release control performance of a new phosphorus inactive clay (PIC) and compared with Phoslock(®). Meanwhile, the impacts of PIC and Phoslock(®) on phytoplankton abundance and community structure in eutrophic water were also discussed. With the dosage of 40 mg/L, PIC effectively removed 97.7% of total phosphorus (TP) and 98.3% of soluble reactive phosphorus (SRP) in eutrophic waters. In sediments, Fe/Al-phosphorus and organic phosphorus remained stable whereas Ca-phosphorus had a significant increase of 13.1%. The results indicated that PIC may form the active overlay at water-sediment interface and decrease the bioavailability of phosphorus. The phytoplankton abundance was significantly reduced by PIC and decreased from (1.0-2.4) × 10(7) cells/L to (1.3-4.3) × 10(6) cells/L after 15 d simultaneous experiment. The phytoplankton community structure was also altered, where Cyanobacteria and Bacillariophyceae were the most inhibited and less dominant due to their sensitivity to phosphorus. After PIC treatment, the residual lanthanum concentration in water was 1.44-3.79 μg/L, and the residual aluminium concentration was low as 101.26-103.72 μg/L, which was much less than the recommended concentration of 200 μg/L. This study suggests that PIC is an appropriate material for phosphorus inactivation and algal bloom control, meaning its huge potential application in eutrophication restoration and management

    Diagnose Pathogens in Drinking Water via Magnetic Surface-Enhanced Raman Scattering (SERS) Assay

    Get PDF
    Rapid identification and diagnosis of bacteria and other microorganisms is a great challenge for drinking water safety due to the increasing frequency of pathogenic infections. Raman spectroscopy is a non-destructive tool to characterize the biochemical fingerprints of bacterial cells and its signal can be improved by surface-enhanced Raman scattering (SERS). Thus, Raman scattering has a huge potential in fast diagnosis of pathogens in drinking water, with low cost and high reproducibility. In this work, we developed a novel fast diagnosis method to detect aquatic pathogens via magnetic SERS assay. With chemical coprecipitation synthesis and surface glucose reduction, the silver-coated magnetic nanoparticles (Ag@MNPs) had a welldeveloped core-shell structure and high efficiency to capture bacterial cells. Ag@MNPs achieved 103 enhancement factor for rhodamine 6G and the limit of detection was 10-9 M. The magnetic SERS assay also successfully detected various bacteria (A. baylyi and E. coli) with high sensitivity (105 CFU/mL). This platform provided a promising and easy-operation approach for pathogen detection for food and drinking water safety

    Identification of Benzo[a]pyrene-metabolizing bacteria in forest soils by using DNA-based stable-isotope probing

    Get PDF
    DNA-based stable-isotope probing (DNA-SIP) was used in this study to investigate the uncultivated bacteria with benzo[a]pyrene (BaP) metabolism capacities in two Chinese forest soils (Mt. Maoer in Heilongjiang Province and Mt. Baicaowa in Hubei Province). We characterized three different phylotypes with responsibility for BaP degradation, none of which were previously reported as BaP-degrading microorganisms by SIP. In Mt. Maoer soil microcosms, the putative BaP degraders were classified as belonging to the genus Terrimonas (family Chitinophagaceae, order Sphingobacteriales), whereas Burkholderia spp. were the key BaP degraders in Mt. Baicaowa soils. The addition of metabolic salicylate significantly increased BaP degradation efficiency in Mt. Maoer soils, and the BaP-metabolizing bacteria shifted to the microorganisms in the family Oxalobacteraceae (genus unclassified). Meanwhile, salicylate addition did not change either BaP degradation or putative BaP degraders in Mt. Baicaowa. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD) genes were amplified, sequenced, and quantified in the DNA-SIP (13)C heavy fraction to further confirm the BaP metabolism. By illuminating the microbial diversity and salicylate additive effects on BaP degradation across different soils, the results increased our understanding of BaP natural attenuation and provided a possible approach to enhance the bioremediation of BaP-contaminated soils

    Graphene-oxide modified polyvinyl-alcohol as microbial carrier to improve high salt wastewater treatment

    Get PDF
    This work discussed the preparation and characterization of graphene oxide (GO) modified polyvinyl alcohol (PVA) for bacteria immobilization to enhance the biodegrdation efficiency of saline organic wastewater. GO-PVA material has lamellar structure with higher surface area to support bacterial growth and high salinity tolerance. It significantly stimulated the bacterial population by 1.4 times from 2.07×103 CFU/mL to 5.04×103 CFU/mL, and the microbial structure was also improved for salinity tolerance. Acinetobacter, Pseudomonas and Thermophilic hydrogen bacilli were enriched inside GO-PVA materials for glucose biodegradation. Compared to the CODCr removal efficiency with only PVA as the carrier (52.8%), GO-PVA material had better degradation performance (62.8%). It is proved as a good candidate for bioaugmentation to improve biodegradation efficiency in hypersaline organic wastewater

    Effective field theory of topological insulator and the Foldy-Wouthuysen transformation

    Full text link
    Employing the Foldy-Wouthuysen transformation it is demonstrated straightforwardly that the first and second Chern numbers are equal to the coefficients of the 2+1 and 4+1 dimensional Chern-Simons actions which are generated by the massive Dirac fermions coupled to the Abelian gauge fields. A topological insulator model in 2+1 dimensions is discussed and by means of a dimensional reduction approach the 1+1 dimensional descendant of the 2+1 dimensional Chern-Simons theory is presented. Field strength of the Berry gauge field corresponding to the 4+1 dimensional Dirac theory is explicitly derived through the Foldy-Wouthuysen transformation. Acquainted with it the second Chern numbers are calculated for specific choices of the integration domain. A method is proposed to obtain 3+1 and 2+1 dimensional descendants of the effective field theory of the 4+1 dimensional time reversal invariant topological insulator theory. Inspired by the spin Hall effect in graphene, a hypothetical model of the time reversal invariant spin Hall insulator in 3+1 dimensions is proposed.Comment: 20 pages. Few corrections and Refs. adde
    • …
    corecore