2,529 research outputs found

    Hamiltonicity of 3-arc graphs

    Get PDF
    An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y)(v,u,x,y) of vertices such that both (v,u,x)(v,u,x) and (u,x,y)(u,x,y) are paths of length two. The 3-arc graph of a graph GG is defined to have vertices the arcs of GG such that two arcs uv,xyuv, xy are adjacent if and only if (v,u,x,y)(v,u,x,y) is a 3-arc of GG. In this paper we prove that any connected 3-arc graph is Hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are Hamiltonian. As a consequence we obtain that if a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is Hamiltonian. This confirms the well known conjecture, that all vertex-transitive graphs with finitely many exceptions are Hamiltonian, for a large family of vertex-transitive graphs. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.Comment: in press Graphs and Combinatorics, 201

    Impacts of urbanization on air quality and the related health risks in a city with complex terrain

    Get PDF
    Urbanization affects air pollutants via urban expansion and emission growth, thereby inevitably changing the health risks involved with air pollutants. However, the health risks related to urbanization are rarely estimated, especially for cities with complex terrain. In this study, a highly urbanized city with severe air pollution and complex terrain (Chengdu) is selected to explore this issue. The effects of urban expansion are further compared with emission growth because air quality management is usually achieved by regulating anthropogenic emissions. Air pollution in Chengdu was mainly caused by PM2.5 and O3 from 2015 to 2021. PM2.5 pollution tended to appear in cold months (November to February) owing to the blocking of air and the stable atmospheric layer, whereas O3 pollution was likely to occur in warm months (April to August) that experience high-temperature and strong-sunlight conditions and are dominated by high-pressure systems. From 2015 to 2021, the 7-year annual average of premature mortality from all non-accidental causes (ANACs) due to PM2.5 and O3 was 9386 (95 % confidence interval (CI) of 6542–11 726) and 8506 (95 % CI of 4817–11 882), respectively. Based on the characteristics of PM2.5 and O3, six numerical experiments were conducted to investigate the impacts of urban expansion and emission growth on the health risks related to air pollutants. The results show that urban land use led to an increase in the air temperature and boundary layer height compared with cropland, which was conducive to the diffusion of PM2.5. Thus, the monthly average surface PM2.5 concentrations decreased by 10.8 µg m−3 (7.6 %) in January. However, the monthly average daily maximum 8 h average (MDA8) O3 concentrations increased by 10.6 µg m−3 (6.0 %) in July owing to the stronger photochemical production and better vertical mixing during daytime. In this case, premature mortality from ANACs due to PM2.5 decreased by 171 (95 % CI of 129–200, or about 6.9 %) in January, and that due to O3 increased by 203 (95 % CI of 122–268, or about 9.5 %) in July. As for the effects of emission growth, the monthly average PM2.5 and MDA8 O3 concentrations increased by 23.9 (16.8 %) and 4.8 µg m−3 (2.7 %), respectively, when anthropogenic emissions were taken into account. Premature mortality from ANACs due to PM2.5 and O3 then increased by 388 (95 % CI of 291–456, or about 15.7 %) and 87 (95 % CI of 54–112, or about 4.1 %), respectively. From a health risk perspective, the effects of urban land use on the health risks related to PM2.5 are about half that of anthropogenic emissions, whereas the effects of urban land use on the health risks related to O3 can be 2 times that of anthropogenic emissions. This emphasizes that, in addition to regulating anthropogenic emissions, urban planning is also important for urban air quality, especially for secondary pollutants like O3.</p

    Distinction between PTB7-Th samples prepared from Pd(PPh3)4 and Pd2(dba)3/P(: O -tol)3 catalysed stille coupling polymerization and the resultant photovoltaic performance

    Get PDF
    State-of-the-art polymer donors for bulk heterojunction (BHJ) polymer solar cells (PSCs) are mostly alternating donor-acceptor (D-A) copolymers prepared from palladium catalysed Stille cross-coupling condensations. The structural variation of D-A copolymers, such as conjugated backbones, alkyl side chains and positions, substituents and molecular weights, has been proven to significantly impact the energy levels, intermolecular interactions and molecular packing, which hereafter synergistically determine the performance of corresponding BHJ PSCs. For a given D-A copolymer, the alternation of D and A units does not always proceed as intended when a specific catalyst is employed. The actual D:A ratios and the molecular weights would most likely be inconsistent as well when catalyzed differently in preparation. To clarify the impact of the catalysts employed for polymerizations on the structure of the resultant polymers and on the corresponding photovoltaic performance, a comprehensive investigation was conducted on the distinction between two PTB7-Th samples prepared from Stille coupling polymerization with the classic palladium catalysts Pd2(dba)3/P(o-tol)3 and Pd(PPh3)4, respectively. The structural variation between the two PTB7-Th samples is discovered to be distinct with respect to both the actual D: ratios and the molecular weights, which endow the two samples with entirely different aggregation behaviors and optoelectronic properties. The optimized polymer:PC71BM BHJ PSC device demonstrates a normal PCE of 8.65% with the PTB7-Th sample catalyzed by Pd(PPh3)4 as reported and a deteriorated PCE of 4.07% with the PTB7-Th sample catalyzed by Pd2(dba)3/P(o-tol)3. A significant morphological evolution between the two PTB7-Th samples from the neat film to the BHJ film was clarified. This wealth of information on the strong correlation among the variations in the chemical structure, the morphology and the device performance allows the establishment of guidance on the selection of the appropriate catalyst to obtain high-performance PSC polymers

    A Ladder-type Heteroheptacene 12H-Dithieno[2′,3′:4,5]thieno[3,2-b:2′,3′-h]fluorene Based D-A Copolymer with Strong Intermolecular Interactions toward Efficient Polymer Solar Cells

    Get PDF
    Ladder-type electron-donating units for D-A copolymers applied in polymer solar cells usually comprise multiple tetrahedral carbon bridges bonded with out-of-plane alkyl chains for desirable solubility for device processing. However, molecular packing of resultant copolymers in the solid state and charge transport within devices are also impeded in spite of with multiple fused aromatic backbones. To mitigate this issue, a structurally well-defined ladder-type electron-donating heteroheptacene, 12H-dithieno[2′,3′:4,5]thieno[3,2-b:2′,3′-h]fluorene (DTTF) with an extended conjugated backbone and a single tetrahedral carbon bridge attached with two bulky alkyl chains was designed and synthesized. The copolymerization of DTTF with 4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (DTBT) afforded a soluble D-A copolymer (PDTTF-DTBT) with a medium optical band gap of 1.72 eV and low-lying HOMO level at -5.36 eV. PDTTF-DTBT unprecedentedly exhibits strong intermolecular stacking ability and presents preferential face-on orientation on both ZnO and PEDOT:PSS layers. The improved packing order and appropriate phase separation of both the copolymer and PC71BM in the bulk heterojunction blend on the ZnO layer over on the PEDOT:PSS layer lead to much improved power conversion efficiency of ∼8.2% in the inverted solar cell device, among the highest for reported ladder-type D-A copolymers. The research demonstrates that it is an effective method to incorporate a single tetrahedral carbon bridge to the molecular center of a ladder-type heteroacene with heavily extended π-conjugation to prepare D-A copolymers toward highly efficient PSCs

    Measurement of pretzelosity asymmetry of charged pion production in Semi-Inclusive Deep Inelastic Scattering on a polarized 3^3He target

    Full text link
    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized 3^3He target was performed at Jefferson Lab in the kinematic region of 0.16<x<0.350.16<x<0.35 and 1.4<Q2<2.71.4<Q^2<2.7 GeV2{\rm GeV^2}. The pretzelosity asymmetries on 3^3He, which can be expressed as the convolution of the h1Th^\perp_{1T} transverse momentum dependent distribution functions and the Collins fragmentation functions in the leading order, were measured for the first time. Using the effective polarization approximation, we extracted the corresponding neutron asymmetries from the measured 3^3He asymmetries and cross-section ratios between the proton and 3^3He. Our results show that for both π±\pi^{\pm} on 3^3He and on the neutron the pretzelosity asymmetries are consistent with zero within experimental uncertainties.Comment: 6 pages, 3 figures; enlarged the legends in Fig.3; added 3 citation

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4σ\sigma, and determine neutrino oscillation parameters sin2θ12\sin^2\theta_{12}, Δm212\Delta m^2_{21}, and Δmee2|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. \sim17,000 508-mm diameter PMTs with high quantum efficiency provide \sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure

    The European Union in the World — A Community of Values

    Get PDF
    These are momentous times in Europe. The Euro has been successfully introduced, the enlargement negotiations are approaching their climax, and the European Convention (“Convention”) is moving towards the drafting of a constitution for a new, continent-wide political entity. At the same time, unrest is manifest, particularly in two areas. On the one hand, many of our citizens, and not just the political elites, are dissatisfied with Europe\u27s performance on the world stage and are concerned about the maintenance of peace and security within the Union. In these areas they would like to see a strengthened, more effective entity-- “more Europe.” On the other hand, their disenchantment with the long reach of European Union (“EU” or “Union”) regulation in the first pillar area of economic policy is growing. The feeling of loss of local control over their destiny and a vague feeling of potential loss of identity within an ever more centralized polity is palpable. Here, they want “less Europe.” In the outside world, change is also the order of the day. The ice-sheet of bipolarity, which overlaid and hid the complexity of international relations during the Cold War, is breaking up at an ever-increasing speed and revealing a world in which two paradigms are competing to become the underlying ordering principles for the new century. The traditional paradigm of interacting Nation States, each pursuing its own separate interests, with alliances allowing the small to compete with the large, is alive and well, and its proponents like Machiavelli or Churchill continue to be in vogue in the literature of international relations and the rhetoric of world leaders. At the same time, there is a school of thought which points to the growing economic and ecological interdependence of our societies and the necessity for new forms of global governance to complement national action. It is also becoming abundantly clear that the concept of a “Nation State” is often a fiction, positing as it does an identity between the citizens of a State and the members of a culturally homogenous society. For both reasons, the concept of the Nation State as the principal actor on the world stage, is called into question. The experience of the Union with the sharing of State sovereignty is clearly related to the second paradigm and also to the EU\u27s firm support for the development of the United Nations (“U.N.”) as well as other elements of multilateral governance. It would hardly be wise to suggest that any foreign policy, and certainly not that of the EU, should be based only on this paradigm. Given the recurrent threats to security, which seem to be part of the human condition expressed by some as the “inevitability of war”--the defense of territorial integrity; action against threats of aggression; and resistance to crimes against humanity such as genocide--the ability to conduct a security policy based much more on the old paradigm of interacting interests will continue to be required. That the EU needs to develop such a capability will be taken here as a given. Such a crisis-management capability will be essential to the Union, but will be distinguished here from the more long-term elements of foreign policy, which can be thought of as being designed to reduce the need for crisis management in the context of a security policy to a minimum. The crisis-management area of policy will not be treated further here. The thesis of this Essay is that the same set of political concepts can serve as a guide to the future internal development of the EU and as the basis of such a long-term foreign policy. Furthermore, it suggests that neither should be seen in terms of the balancing of interests but rather, as the expression of a small list of fundamental values. The list is as follows: (1) the rule of law as the basis for relations between members of society; (2) the interaction between the democratic process and entrenched human rights in political decision-making; (3) the operation of competition within a market economy as the source of increasing prosperity; (4) the anchoring of the principle of solidarity among all members of society alongside that of the liberty of the individual; (5) the adoption of the principle of sustainability of all economic development; and (6) the preservation of separate identities and the maintenance of cultural diversity within society. These values can be seen as the answer to the question posed both, by citizens of the Union and by our fellow citizens of the world: “What does the EU stand for?” In exploring these values we should, however, remember that in the real world there will be occasions on which Realpolitik will intrude and the interest-based paradigm will prevail
    corecore