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Abstract An arc of a graph is an oriented edge and a 3-arc is a 4-tuple

(v, u, x, y) of vertices such that both (v, u, x) and (u, x, y) are paths of length

two. The 3-arc graph of a graph G is defined to have vertices the arcs of G

such that two arcs uv, xy are adjacent if and only if (v, u, x, y) is a 3-arc of

G. We prove that any connected 3-arc graph is hamiltonian, and all iterative

3-arc graphs of any connected graph of minimum degree at least three are

hamiltonian. As a corollary we obtain that any vertex-transitive graph which

is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at

least three must be hamiltonian. This confirms the conjecture, for this family

of vertex-transitive graphs, that all vertex-transitive graphs with finitely many

exceptions are hamiltonian. We also prove that if a graph with at least four

vertices is Hamilton-connected, then so are its iterative 3-arc graphs.
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1 Introduction

A path or cycle which contains every vertex of a graph is called a Hamilton

path or Hamilton cycle of the graph. A graph is hamiltonian if it contains a

Hamilton cycle, and is Hamilton-connected if any two vertices are connected by

a Hamilton path. The hamiltonian problem, that of determining when a graph

is hamiltonian, is a classical problem in graph theory with a long history. The

reader is referred to [3], [4, Chapter 18], [8, Chapter 10] and [10] for results on

Hamiltonicity of graphs.

In this paper we present a large family of hamiltonian graphs. Such graphs

are defined by means of a graph operator, called the 3-arc graph construction,

which bears some similarities with the line graph operator. This construction

was first introduced in [17,24] in studying a family of arc-transitive graphs

whose automorphism group contains a subgroup acting imprimitively on the

vertex set. (A graph is arc-transitive if its automorphism group is transitive on

the set of oriented edges.) It was used in classifying or characterizing certain

families of arc-transitive graphs [9,12,17,18,23,25].

All graphs in this paper are finite and undirected without loops. We use

the term multigraph when parallel edges are allowed. An arc of a graph

G = (V (G), E(G)) is an ordered pair of adjacent vertices, or equivalently

an oriented edge. For adjacent vertices u, v of G, we use uv to denote the arc

from u to v, vu (�= uv) the arc from v to u, and {u, v} the edge between u and

v. A 3-arc of G is a 4-tuple of vertices (v, u, x, y), possibly with v = y, such

that both (v, u, x) and (u, x, y) are paths of G.

Notation: We follow [4] for graph-theoretic terminology and notation. The

degree of a vertex v in a graph G is denoted by d(v), and the minimum degree

of G is denoted by δ(G). The set of arcs of G with tail v is denoted by A(v),

and the set of arcs of G is denoted by A(G).
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The general 3-arc construction [17,24] involves a self-paired subset of the

set of 3-arcs of a graph. The following definition is obtained by choosing this

subset to be the set of all 3-arcs of the graph.

Definition 1 Let G be a graph. The 3-arc graph of G, denoted by X(G), is

defined to have vertex set A(G) such that two vertices corresponding to two

arcs uv and xy are adjacent if and only if (v, u, x, y) is a 3-arc of G.

It is clear that X(G) is an undirected graph with 2 |E(G)| vertices and
∑

{u,v}∈E(G)(d(u) − 1)(d(v) − 1) edges. We can obtain X(G) from the line

graph L(G) of G by the following operations [14]: split each vertex {u, v} of

L(G) into two vertices, namely uv and vu; for any two vertices {u, v}, {x, y} of

L(G) that are distance two apart in L(G), say, u and x are adjacent in G, join

uv and xy by an edge. On the other hand, the quotient graph of X(G) with

respect to the partition P = {{uv, vu} : {u, v} ∈ E(G)} of A(G) is isomorphic

to the graph obtained from the square of L(G) by deleting the edges of L(G).

The reader is referred to [14,13,2] respectively for results on the diameter and

connectivity, the independence, domination and chromatic numbers, and the

edge-connectivity and restricted edge-connectivity of 3-arc graphs.

The following is the first main result in this paper.

Theorem 1 Let G be a graph without isolated vertices. The 3-arc graph of G

is hamiltonian if and only if

(a) δ(G) ≥ 2;

(b) no two degree-two vertices of G are adjacent; and

(c) the subgraph obtained from G by deleting all degree-two vertices is con-

nected.

We remark that Theorem 1 can not be obtained from known results on

the hamiltonicity of line graphs, though X(G) and L(G) are closely related as

mentioned above. As a matter of fact, even if L(G) is hamiltonian, X(G) is

not necessarily hamiltonian, as witnessed by stars K1,t with t ≥ 3.
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We define the iterative 3-arc graphs of G by

X1(G) = X(G), Xi+1(G) = X(Xi(G)), i ≥ 1.

Theorem 1 together with [14, Theorem 2] implies the following result.

Theorem 2 (a) A 3-arc graph is hamiltonian if and only if it is connected.

(b) If G is a connected graph with δ(G) ≥ 3, then Xi(G) is hamiltonian for

every integer i ≥ 1.

We will prove Theorems 1 and 2 in Section 3. In Section 4 we will prove

the following result.

Theorem 3 Let G be a 2-edge connected graph with δ(G) ≥ 3. If G contains

a path of odd length between any two distinct vertices, then its 3-arc graph is

Hamilton-connected.

A basic strategy in the proof of Theorems 1 and 3 is to find an Eulerian

tour or an open Eulerian trail in a properly defined multigraph that produces

the required Hamilton cycle or path. This is similar to the observation [5] that

an Eulerian tour of a graph produces a Hamilton cycle of its line graph.

Theorem 3 implies the following result.

Theorem 4 If a graph G with at least four vertices is Hamilton-connected,

then so are its iterative 3-arc graphs Xi(G), i ≥ 1.

Given vertex-disjoint graphs G and H, the join G∨H of them is the graph

with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {{u, v} : u ∈
V (G), v ∈ V (H)}. Theorem 3 implies the following result.

Corollary 1 Let G and H be graphs such that max{δ(G), δ(H)} ≥ 2. Then

X(G ∨ H) is Hamilton-connected.

In the case when G has a large order but small maximum degree, X(G) has

a large order but relatively small maximum degree. In this case the Hamiltonic-

ity of X(G) may not be derived from known sufficient conditions for Hamilton
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cycles such as the degree conditions in the classical Dirac’s or Ore’s Theorem

(see [3,4,8,10]).

In spirit, Theorems 1 and 2 are parallel to the well-known conjecture of

Thomassen [20] which asserts that every 4-connected line graph is hamiltonian.

This conjecture is still open; see [6,10,11,16,22]. In contrast, Theorem 1 solves

the hamiltonian problem for 3-arc graphs completely.

A well-known conjecture due to Lovász, formulated by Thomassen [21],

asserts that all connected vertex-transitive graphs, with finitely many excep-

tions, are hamiltonian. Since the 3-arc graph of an arc-transitive graph is

vertex-transitive, Theorem 2 implies the following result, which confirms this

conjecture for a large family of vertex-transitive graphs. (The family of arc-

transitive graphs is large from a group-theoretic point of view [19].)

Corollary 2 If a vertex-transitive graph is isomorphic to the 3-arc graph of a

connected arc-transitive graph of degree at least three, then it is hamiltonian.

The Lovász conjecture has been confirmed for several families of vertex-

transitive graphs [15], including connected vertex-transitive graphs of order

kp, where k ≤ 4, (except for the Petersen graph and the Coxeter graph) of

order pj , where j ≤ 4, and of order 2p2, where p is prime, and some families

of Cayley graphs. Tools from group theory were used in the proof of almost

all these results. Corollary 2 has a different flavour and its proof does not rely

on group theory.

There has also been considerable interest on Hamilton-connectedness of

vertex-transitive graphs. Theorem 4 implies that if a vertex-transitive graph

(with at least four vertices) is Hamilton-connected, then so are its iterative 3-

arc graphs. For example, it is known that every connected non-bipartite Cayley

graph of degree at least three on a finite abelian group [7] or a Hamiltonian

group [1] is Hamilton-connected. (A finite non-abelian group in which every

subgroup is normal is called a Hamiltonian group.) From this and Theorem 4

we know immediately that all iterative 3-arc graphs of such a Cayley graph

are also Hamilton-connected.
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2 Preliminaries

Let G∗ be a multigraph. A walk in G∗ of length l is a sequence v0, e1, v1,

. . . , vl−1, el, vl, whose terms are alternately vertices and edges of G∗ (not nec-

essarily distinct), such that vi−1 and vi are the end-vertices of ei, 1 ≤ i ≤ l. A

walk is closed if its initial and terminal vertices are identical, is a trail if all its

edges are distinct, and is a path if all its vertices are distinct. Often we present

a trail by listing its sequence of vertices only, with the understanding that the

edges used are distinct. A trail that traverses every edge of G∗ is called an

Eulerian trail of G∗, and a closed Eulerian trail is called an Eulerian tour. A

multigraph is Eulerian if it admits an Eulerian tour. It is well known that a

multigraph is Eulerian if and only if all its vertices have even degrees.

A 2-trail of G∗ is a trail of length two (and so is a path or cycle of length

two). We call a 2-trail (u, x, v) with mid-vertex x a visit to x (if u = v, then

(u, x, u) is thought as entering and leaving x on parallel edges). When there is

no need to make distinction between (u, x, v) and (v, x, u), or the orientation

of the visit is unknown, we write [u, x, v]. Two visits (u, x, v) and (u′, x, v′) are

called twin visits if {u, v} = {u′, v′} and the four edges involved are distinct. In

particular, when u = v, two twin visits (u, x, u) and (u, x, u) use four parallel

edges between u and x.

Denote by E∗(x) the set of edges of G∗ incident with x ∈ V (G∗), and

d∗(x) = |E∗(x)| the degree of x in G∗. In the case when d∗(x) is even, a decom-

position of E∗(x) into a set of visits to x is called a visit-decomposition of E∗(x)

(at x). In this definition the orientations of the visits in the decomposition are

not important in our subsequent discussion. So we may view each visit (u, x, v)

in such a visit-decomposition as a non-oriented path (if u �= v) or cycle (if

u = v) of length two. As an example, if E∗(x) = {{x, y}, {x, y}, {x, z}, {x, z}},

where {x, y} and {x, y} are viewed as distinct edges between x and y, then both

{[y, x, y], [z, x, z]} and {[y, x, z], [y, x, z]} are visit-decompositions of E∗(x).

Definition 2 Given a visit-decomposition J(x) of E∗(x), define H(x) to be

the bipartite graph with vertex bipartition {J(x), A(x)} such that p ∈ J(x)
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and xy ∈ A(x) are adjacent if and only if y is not in p, where A(x) is the set

of arcs of the underlying simple graph of G∗ with tail x.

We emphasize that H(x) relies on J(x). One can verify the following result

by using Hall’s marriage theorem.

Lemma 1 Suppose x is a vertex of G∗ such that d∗(x) ≥ 6 is even and either

x is joined to every neighbour of x by exactly two parallel edges, or x is joined

to one of its neighbours by exactly three parallel edges, another neighbour by

a single edge, and each of the remaining neighbours by exactly two parallel

edges. Let J(x) be a visit-decomposition of E∗(x). Then the bipartite graph

H(x) with respect to J(x) has no perfect matchings if and only if d∗(x) = 6

and J(x) contains two twin visits.

Proof We have |J(x)| = |A(x)| = d∗(x)/2 and δ(H(x)) ≥ (d∗(x)/2) − 2 ≥ 1.

One can show that, if d∗(x) ≥ 8, then the neighbourhood NH(x)(S) in H(x) of

each S ⊆ J(x) has size at least |S|. Thus, by Hall’s marriage theorem, H(x)

has a perfect matching when d∗(x) ≥ 8.

Suppose H(x) has no perfect matchings, so that d∗(x) = 6 and |J(x)| =

|A(x)| = 3. Then there exists S ⊆ J(x) such that |NH(x)(S)| < |S|. This

implies |S| = 2 and so |NH(x)(S)| ≤ 1. Denote S = {(u, x, v), (y, x, z)}, where

u, v, y, z ∈ N(x) (the neighbourhood of x in G∗). Then NH(x)(S) = (A(x) −
{xu, xv})∪ (A(x)−{xy, xz}) = A(x)− ({xu, xv}∩{xy, xz}). Since |N(x)| = 3

and |NH(x)(S)| ≤ 1, it follows that {u, v} = {y, z}, and therefore (u, x, v) and

(y, x, z) are twin visits.

Conversely, if d∗(x) = 6 and J(x) contains twin visits, then H(x) consists

of two paths of length two and hence has no perfect matchings. 	


Definition 3 Let C : v0, e1, v1, e2, v2, . . . , vl−2, el−1, vl−1, el, vl be an Eulerian

trail of G∗, possibly with vl = v0. The visit (vi−1, vi, vi+1) to vi is said to

be induced by C, 1 ≤ i ≤ l − 1. In addition, if C is an Eulerian tour, then

(vl−1, v0, v1) is also a visit to v0 induced by C.

Denote by C(x) the set of visits to x ∈ V (G∗) induced by C.
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Define HC(x) to be the bipartite graph at x as defined in Definition 2

with respect to the visit-decomposition C(x) of E∗(x). (We leave HC(v0) and

HC(vl) undefined if C is an open Eulerian trail.)

Note that a vertex may be visited several times by C because the vertices

on C may be repeated. Indeed, C(x) is a visit-decomposition of E∗(x) for all

vertices x, except v0 and vl when v0 �= vl.

Definition 4 Let C be an Eulerian tour of G∗ and J(x) a visit-decomposition

of E∗(x). We say that C is compatible with J(x), written C(x) ≺ J(x), if for

every (a, x, b) ∈ J(x), either (a, x, b) ∈ C(x) or (b, x, a) ∈ C(x).

(a) (b)

x1

a

b

e1

x4

e4

x3

x2

x

e3

e2

C((x1, x, x2), (x3, x, x4))

R

Q

C

P P

x2

e2

x

x1

e1

e4
x4

e3

x3

Q

C1, C2 C1

Fig. 1 (a) Bow-tie operation; (b) Concatenation operation.

Definition 5 Let C be a trail of G∗ with length at least four. Let (x1, x, x2), (x3,

x, x4) ∈ C(x) be distinct visits, so that C can be expressed as

C :
R︷ ︸︸ ︷

a, . . . , x1, e1, x, e2,

P︷ ︸︸ ︷
x2, . . . , x3, e3, x, e4,

Q
︷ ︸︸ ︷
x4, . . . , b,

possibly with a = b.

Define

C((x1, x, x2), (x3, x, x4)) :
R︷ ︸︸ ︷

a, . . . , x1, e1, x, e−1
3 ,

P −
︷ ︸︸ ︷
x3, . . . , x2, e

−1
2 , x, e4,

Q︷ ︸︸ ︷
x4, . . . , b
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where P− is the trail obtained from P by reversing its direction, and e−1
2 and

e−1
3 are the same edges as e2 and e3 but with reversed orientations, respectively.

(See Figure 1 (a).)

We call C → C((x1, x, x2), (x3, x, x4)) the bow-tie operation on C with

respect to (x1, x, x2) and (x3, x, x4).

Definition 6 Let

C1 : x1, e1, x, e2,

P︷ ︸︸ ︷
x2, . . . , x1; C2 : x3, e3, x, e4,

Q
︷ ︸︸ ︷
x4, . . . , x3 .

be edge-disjoint closed trails of G∗ with x as a common vertex. Define

C1 : x1, e1, x, e−1
3 ,

Q−1

︷ ︸︸ ︷
x3, . . . , x4, e

−1
4 , x, e2,

P︷ ︸︸ ︷
x2, . . . , x1 .

We call (C1, C2) → C1 the concatenation operation with respect to (C1, C2, (x1, x,

x2), (x3, x, x4)). (See Figure 1 (b).)

Remark 1 Some of x1, x2, x3, x4 or even all of them in Definitions 5 and 6 are

allowed to be the same vertex. Each of P,Q (and R in Definition 5) may visit

some of x, x1, x2, x3, x4 several times, and they may have common vertices.

In each operation above, the visits (x1, x, x2), (x3, x, x4) are replaced by

(x1, x, x3), (x4, x, x2), respectively. All other visits induced by C (in Definition

5) or C1 ∪ C2 (in Definition 6) are retained or with orientation reversed.

In Definition 6, C1 is a closed trail which covers every edge covered by C1

and C2. In particular, if C1 and C2 collectively cover all edges of G∗, then C1

is an Eulerian tour of G∗.

3 Proof of Theorems 1 and 2

Proof of Theorem 1 Denote by Si the set of vertices of G with degree i,

for i ≥ 1.

Suppose that G has no isolated vertices and X(G) is hamiltonian. We show

that (a), (b) and (c) hold. Note first that if G has a degree-one vertex, then
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the unique arc emanating from it gives rise to an isolated vertex of X(G).

Similarly, if x, y ∈ S2 are adjacent, say, N(x) = {u, y}, N(y) = {x, v}, then

the edge of X(G) between xu and yv is an isolated edge no matter whether

u �= v or not. Since X(G) is assumed to be hamiltonian, it follows that G is

connected with δ(G) ≥ 2 and S2 is an independent set of G.

It remains to prove that G − S2 is connected. Suppose otherwise. Then

we can choose a minimal subset S of S2 such that G − S is disconnected.

Note that S �= ∅ as G is connected. Let H be a component of G − S. The

minimality of S implies that each vertex of S has exactly one neighbour in

V (H), and each vertex of S2 with both neighours in H (if such a vertex exists)

is contained in V (H). Denote by A1 the set of arcs of G with tails in S and

heads outside of V (H). Denote by A2 the set of arcs of G with tails in V (H)

(and heads in V (H) or S). One can verify that the subgraph of X(G) induced

by A1 ∪A2 is a connected component of X(G). Since there are arcs of G not in

A1 ∪ A2, it follows that X(G) is disconnected, contradicting our assumption.

Hence G − S2 is connected.

Suppose that G satisfies (a), (b) and (c). We aim to prove that X(G)

is hamiltonian. Note that G is connected by (c). Let G∗ be the multigraph

obtained from G by doubling each edge. Then the degree d∗(v) = 2d(v) of each

v ∈ V (G) in G∗ is even. Hence G∗ is Eulerian. We will prove the existence

of an Eulerian tour of G∗ such that the corresponding bipartite graph (see

Definition 3) at each vertex has a perfect matching. We will then exploit such

an Eulerian tour to construct a Hamilton cycle of X(G).

We claim first that there exists an Eulerian tour C of G∗ such that

if v ∈ S2 with N(v) = {u,w}, then C(v) ≺ {(u, v, u), (w, v, w)}. (1)

To construct such an Eulerian tour, we can start from any vertex and travel as

far as possible without repeating any edge such that, whenever the tour reaches

a vertex of S2, it returns to the previous vertex immediately. Since G − S2 is

connected, an Eulerian tour C of G∗ satisfying (1) can be constructed this
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way. Note that G∗ − S2 is Eulerian because it is connected and all its vertices

have even degrees.

For an Eulerian tour C of G∗ satisfying (1), let Z(C) denote the set of

vertices x such that HC(x) has no perfect matchings. Since for every x ∈ S2,

HC(x) ∼= 2K2 is a perfect matching, by Lemma 1 we have Z(C) ⊆ S3.

Now we choose an Eulerian tour C of G∗ satisfying (1) such that |Z(C)|
is minimum. We claim that Z(C) = ∅. Suppose otherwise. Then by Lemma

1, C(x) contains twin visits for each x ∈ Z(C). Denote N(x) = {x1, x2, x3}
for a fixed x ∈ Z(C), and assume without loss of generality that C(x) =

{(x1, x, x2), (x1, x, x2), (x3, x, x3)}. Denote C ′ = C((x1, x, x2), (x3, x, x3)). Then

C ′ is an Eulerian tour of G∗ and C ′(x) = {(x1, x, x2), (x1, x, x3), (x2, x, x3)}.

One can see that HC′(x) is a perfect matching of three edges, and HC′(y) is

isomorphic to HC(y) for each y �= x. Thus Z(C ′) is a proper subset of Z(C),

and moreover (1) is respected by C ′ at every v ∈ S2. Since this contradicts the

choice of C, we conclude that Z(C) = ∅; that is, HC(v) has a perfect matching

for each v ∈ V (G).

Let C be a fixed Eulerian tour of G∗ satisfying (1) such that Z(C) = ∅. Let

us fix a perfect matching of HC(v) for each v ∈ V (G). Every traverse of C to

v corresponds to a visit to v, say, (u, v, w), and in the chosen perfect matching

of HC(v), (u, v, w) is matched to an arc of A(v) other than vu and vw. Denote

this arc by φ(u, v, w). Then for any two consecutive visits (u, v, w), (v, w, x)

induced by C (that is, (u, v, w, x) is a segment of C), φ(u, v, w) and φ(v, w, x)

are adjacent in X(G). Since C is an Eulerian tour of G∗ and a perfect match-

ing of each HC(v) is used, every arc of G is of the form φ(u, v, w) for some

segment (u, v, w) of C. Therefore, if, say, C = (u, v, w, x, y, . . . , a, b, c, u), then

the sequence

φ(u, v, w), φ(v, w, x), φ(w, x, y), . . . , φ(a, b, c), φ(b, c, u), φ(c, u, v), φ(u, v, w)

of arcs of G gives rise to a Hamilton cycle of X(G). 	

We illustrate the proof above by the following example.
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Example 1 Since the Petersen graph PG (see Figure 2) satisfies the conditions

in Theorem 1, its 3-arc graph X(PG) is hamiltonian. Let

C : a1, a2, a3, a4, a5, a1, b1, b4, b2, b5, b3, b1, a1, a2, b2,

b5, a5, a4, b4, b2, a2, a3, b3, b1, b4, a4, a3, b3, b5, a5, a1.

Then C is an Eulerian tour of the multigraph PG∗ obtained from PG by

doubling each edge. One can verify that at each ai or bi, HC(ai) or HC(bi) has a

perfect matching. In HC(a2) the ‘vertex’ (a1, a2, a3) is matched to the ‘vertex’

a2b2, and in HC(a3), (a2, a3, a4) is matched to a3b3, and so on. Continuing,

one can verify that C gives rise to the following Hamilton cycle of X(PG):

a2b2, a3b3, a4b4, a5b5, a1a2, b1b3, b4a4, b2a2, b5a5, b3a3, b1b4, a1a5, a2a3, b2b4, b5b3,

a5a1, a4a3, b4b1, b2b5, a2a1, a3a4, b3b5, b1a1, b4b2, a4a5, a3a2, b3b1, b5b2, a5a4, a1b1, a2b2.

a1 a2

a5 a3

a4

b4

b1
b

bb 3

2

5

start

Fig. 2 An Eulerian tour of PG∗ which produces a Hamilton cycle of the 3-arc graph of the

Petersen graph PG.

Proof of Theorem 2 (a) Let G be a graph. Define Ĝ to be the graph obtained

from G by replacing each degree-two vertex v by a pair of nonadjacent vertices

each joining to exactly one neighbour of v in G. In [14, Theorem 2] it is proved

that, if δ(G) ≥ 2, then X(G) is connected if and only if Ĝ is connected. One

can verify that δ(G) ≥ 2 and Ĝ is connected if and only if (a), (b) and (c)
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in Theorem 1 hold. Thus, by Theorem 1, if X(G) is connected, then it is

hamiltonian. The converse of this statement is obvious.

(b) If G is connected with δ(G) ≥ 3, then Ĝ = G and so X(G) is connected

by [14, Theorem 2]. Hence, by (a), X(G) is hamiltonian. Since δ(G) ≥ 3, we

have δ(X(G)) ≥ 3. Thus, by applying (a) to X(G), we see that X2(G) is

hamiltonian. Continuing, by induction we can prove that Xi(G) is hamiltonian

for every i ≥ 1. 	


4 Proof of Theorems 3 and 4

Let us first introduce an operation that will be used in the proof of Theorem 3.

Let G∗ be an Eulerian multigraph and C an Eulerian tour of G∗. Let (z1, x, z2)

be a visit of C to x. Write

C : z1, e1, x, e2,

T︷ ︸︸ ︷
z2, . . . , z1,

where e1 is the oriented edge from z1 to x, e2 the oriented edge from x to

z2, and T the segment of C from z2 to z1 covering all edges of G∗ except e1

and e2. Add two new vertices t, t′ to G∗ and join them to x by edges et, et′ ,

respectively, with orientation towards x. Denote the resultant multigraph by

G∗
C(z1, x, z2). Set

W = WC(z1, x, z2) : t, et, x, e2,

T︷ ︸︸ ︷
z2, . . . , z1, e1, x, e−1

t′ , t′.

Since C is an Eulerian tour of G∗, W is an open Eulerian trail of G∗
C(z1, x, z2).

Denote by W (x) the set of visits to x induced by W . As the first and last visits

induced by W , (t, et, x, e2, z2) and (z1, e1, x, e−1
t′ , t′) are members of W (x). Note

that xt, xt′ /∈ A(x).

Definition 7 Define KC(z1, x, z2) to be the bipartite graph with bipartition

{W (x), A(x)} such that an arc in A(x) is adjacent to a visit p ∈ W (x)

if and only if its head does not appear in p. Denote by LC(z1, x, z2) the

graph obtained from KC(z1, x, z2) by deleting the vertices (t, et, x, e2, z2),

(z1, e1, x, e−1
t′ , t′), xz1 and xz2.
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To prove Theorem 3, we need to prove that, for any two distinct arcs xy, uv

of G, there exists a Hamilton path of X(G) between xy and uv. We will prove

the existence of such a path by constructing a specific Eulerian trail in a certain

auxiliary multigraph G∗. We treat the cases x = u and x �= u separately in

the next two lemmas.

Lemma 2 Under the condition of Theorem 3, for any distinct arcs xy, xv ∈
A(G) with the same tail, there exists a Hamilton path of X(G) between xy and

xv.

Proof By our assumption there exists a path in G of odd length connecting

y and v. Let

P : y = x0, x1, x2, . . . , xl−1, xl = v

be a path in G between y and v with minimum possible odd length l ≥ 1.

Denote E0(P ) = {{xj , xj+1} | j = 0, 2, . . . , l − 1} and E1(P ) = {{xj , xj+1} |
j = 1, 3, . . . , l − 2}.

Case 1. x �∈ V (P ). In this case let G∗ be obtained from G by doubling

each edge of E(G)− (E(P )∪{{x, y}, {x, v}}) and tripling each edge of E0(P ).

Case 2. x ∈ V (P ). In this case we have l ≥ 3 and x = xj for some

1 ≤ j ≤ l − 1. If 2 ≤ j ≤ l − 2, then since l is odd, one of the two paths

y, x1, . . . , xj−1, x, v and y, x, xj+1, . . . , xl−1, v would be a path of odd length

connecting y and v that is shorter than P , contradicting the choice of P .

Therefore, either x = x1 or x = xl−1. Assume without loss of generality

that x = x1. Define G∗ to be the multigraph obtained from G by doubling

each edge of E(G) − [(E(P ) − {{x, y}}) ∪ {{x, v}}] and tripling each edge of

E0(P ) − {{x, y}}.

In each case above, d∗(x) = 2d(x) − 2 and d∗(z) = 2d(z) for every z �= x,

and hence G∗ is Eulerian.

Set a = y in Case 1 and a = x2 in Case 2. By extending the 2-path a, x, v

to an Eulerian tour, we see that there are Eulerian tours of G∗ which pass

through (a, x, v). Choose C to be an Eulerian tour of G∗ with (a, x, v) ∈ C(x)
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such that |Z(C)| is minimum, where Z(C) is the set of vertices w �= x of G∗

such that HC(w) has no perfect matching.

Claim 1. Z(C) = ∅; that is, HC(w) has a perfect matching for every

w �= x.

Proof of Claim 1. We prove this by way of contradiction. Suppose HC(w)

has no perfect matching for some w �= x. By Lemma 1, d∗(w) = 6 and C(w)

contains twin visits. Since w �= x, we have d(w) = 3 by the construction of G∗.

Denote N(w) = {w1, w2, w3}. In the case when each of w1, w2 and w3 is joined

to w by two parallel edges, we apply the bow-tie operation at w with respect

to one of the twin visits and the third visit of C(w). Similar to the proof of

Theorem 1, for the resultant Eulerian tour C ′ of G∗, HC′(w) has a perfect

matching, and the visit-decomposition at any other vertex is unchanged. Thus

(a, x, v) ∈ C ′(x) and Z(C ′) is a proper subset of Z(C), contradicting the choice

of C.

It remains to consider the case where exactly one vertex of N(w) is joined

to w by one, two or three (parallel) edges, respectively. Without loss of gen-

erality we may assume that there is one edge between w3 and w, two parallel

edges between w1 and w, and three parallel edges between w2 and w. Then

C(w) = {[w1, w, w2], [w1, w, w2], [w3, w, w2]}. Reversing the orientation of C

when necessary, we may assume (w1, w, w2) ∈ C(w). Denote by e1, e3 the ori-

ented parallel edges from w1 to w, by e2, e4, e6 the oriented parallel edges from

w to w2, and by e5 the oriented edge from w to w3.

Case (a): C(w) = {(w1, w, w2), (w1, w, w2), [w3, w, w2]}. We may assume

C : w1, e1, w, e2, w2, f, . . . , g, w1, e3, w, e4, w2, h, . . . , k, w1.

Let

C ′ : w1, e1, w, e−1
3 , w1, g

−1, . . . , f−1, w2, e
−1
2 , w, e4, w2, h, . . . , k, w1.

Then C ′ is an Eulerian tour of G∗ and C ′(w) = {(w1, w, w1), (w2, w, w2), [w3, w,

w2]}. Moreover, HC′(w) has a perfect matching which matches (w1, w, w1),

(w2, w, w2), [w3, w, w2] to ww2, ww3, ww1 respectively.
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Case (b): C(w) = {(w1, w, w2), (w2, w, w1), [w3, w, w2]}. We may assume

C : w1, e1, w, e2, w2, f, . . . , g, w2, e
−1
4 , w, e−1

3 , w1, h, . . . , k, w1.

Denote

C1 : w1, e1, w, e−1
3 , w1, h, . . . , k, w1; C2 : w2, e

−1
4 , w, e2, w2, f, . . . , g, w2.

Note that each of C1 and C2 is a closed trail, and [w3, w, w2] is a segment of

exactly one of C1 and C2.

In the case when (w3, w, w2) ∈ C(w) and it is in C2, we first rewrite C2 to

highlight the position of (w3, w, w2) in C2:

C ′
2 : w3, e

−1
5 , w, e6, w2, . . . , w3.

Applying the concatenation operation to (C1, C
′
2, (w1, w, w1), (w3, w, w2)) yields:

C ′ : w1, e1, w, e5, w3, . . . , w2, e
−1
6 , w, e−1

3 , w1, h, . . . , k, w1.

We have C ′(w) = {(w1, w, w3), (w2, w, w1), [w2, w, w2]}. Hence HC′(w) has a

perfect matching which matches (w1, w, w3), (w2, w, w1), [w2, w, w2] to ww2, ww3,

ww1 respectively.

In the case when (w3, w, w2) ∈ C(w) and it is in C1, we first rewrite C1 to

highlight the position of [w3, w, w2] in C1:

C ′
1 : w3, e

−1
5 , w, e6, w2, . . . , w3.

Applying the concatenation operation to (C2, C
′
1, (w2, w, w2), (w3, w, w2)) yields:

C ′ : w2, e
−1
4 , w, e5, w3, . . . , w2, e

−1
6 , w, e2, w2, f, . . . , g, w2.

Since C ′(w) = {(w2, w, w3), (w2, w, w2), [w1, w, w1]}, HC′(w) has a perfect

matching which matches (w2, w, w3), (w2, w, w2), [w1, w, w1] to ww1, ww3, ww2

respectively.

The remaining case when (w2, w, w3) ∈ C(w) can be dealt with similarly.

In all possibilities above we obtain a new Eulerian tour C ′ of G∗ such that

HC′(w) has a perfect matching whilst the visit-decomposition at any other
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vertex is unchanged. Thus (a, x, v) ∈ C ′(x) and Z(C ′) is a proper subset of

Z(C), contradicting the choice of C. This completes the proof of Claim 1.

Claim 2. There exists an Eulerian tour C∗ of G∗ together with a visit

(u1, x, u2) ∈ C∗(x) such that (i) HC∗(z) has a perfect matching for every

z �= x, and (ii) the bipartite graph KC∗(u1, x, u2) (as defined in Definition

7) has a perfect matching under which the first and last visits induced by

WC∗(u1, x, u2) are matched to xy and xv resepctively.

Note that, for z �= x, HC∗(z) = HW (z), where W = WC∗(u1, x, u2).

Proof of Claim 2. We will prove the existence of C∗ and (u1, x, u2) ∈ C∗(x)

based on C as in Claim 1.

Case (a): G∗ was constructed in Case 1. Then (a, x, v) = (y, x, v) ∈ C(x)

and all edges of G incident with x except {x, y} and {x, v} were doubled.

In the case when d(x) = 3, let z1 be the neighbour of x in G other than y

and v. One can see that KC(z1, x, z1) has a perfect matching which matches

(t, x, z1), (y, x, v), (z1, x, t′) to xy, xz1, xv, respectively.

In the case when d(x) = 4, let z1 and z2 be the neighbours of x in G other

than y and v. Since (y, x, v) ∈ C(x), without loss of generality we may assume

C(x) ≺ {(z1, x, z1), (z2, x, z2), (y, x, v)} or {(z1, x, z2), [z1, x, z2], (y, x, v)}. If

C(x) ≺ {(z1, x, z1), (z2, x, z2), (y, x, v)}, then KC(y, x, v) has a perfect match-

ing which matches (t, x, v), (z1, x, z1), (z2, x, z2), (y, x, t′) to xy, xz2, xz1,

xv, respectively. In the case when C(x) ≺ {(z1, x, z2), [z1, x, z2], (y, x, v)}, by

applying the bow-tie operation at x with respect to ((z1, x, z2), (y, x, v)) we

obtain a new Eulerian tour C ′ = C((z1, x, z2), (y, x, v)) for which C ′(x) =

{[z1, x, z2], (zj , x, y), (zj′ , x, v)}, where {j, j′} = {1, 2}. Without loss of gener-

ality we may assume C ′(x) = {(z1, x, z2), (zj , x, y), (zj′ , x, v)}. One can see that

KC′(z1, x, z2) contains a perfect matching which matches (t, x, z2), (zj , x, y),

(zj′ , x, v), (z1, x, t′) to xy, xzj′ , xzj , xv, respectively.

Assume d(x) ≥ 5. If LC(y, x, v) has a perfect matching, then adding the

edges {(t, x, v), xy}, {(y, x, t′), xv} to it yields a perfect matching of KC(y, x, v)

which matches the first and last visits of WC(y, x, v) to xy, xv, respectively.
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Suppose that LC(y, x, v) has no perfect matchings. Similar to Lemma 1, by us-

ing Hall’s marriage theorem we can prove that d(x) = 5 and C(x) contains twin

visits, say, [z1, x, z2]; that is, C(x) ≺ {[z1, x, z2], [z1, x, z2], [z3, x, z3], (y, x, v)}.

Without loss of generality we may assume (z1, x, z2) ∈ C(x). It is not hard

to see that KC(z1, x, z2) has a perfect matching which matches (t, x, z2),

(z1, x, z2), [z3, x, z3], (y, x, v), (z1, x, t′) to xy, xz3, xz2, xz1, xv, respectively.

Case (b): G∗ was constructed in Case 2. Then (x2, x, v) ∈ C(x) and all

edges of G incident with x except {x, x2} and {x, v} were doubled.

In the case when d(x) = 3, we have C(x) ≺ {(x2, x, v), (y, x, y)} and

KC(x2, x, v) has a perfect matching which matches (t, x, v), (y, x, y), (x2, x, t′)

to xy, xx2, xv, respectively.

In the case when d(x) = 4, we have C(x) ≺ {(x2, x, v), [z1, x, y], [z1, x, y]}
or C(x) ≺ {(x2, x, v)(z1, x, z1), (y, x, y)}, where z1 is the neighbour of x other

than y, v, x2. If C(x) ≺ {(x2, x, v), [z1, x, y], [z1, x, y]}, let (z1, x, y) ∈ C(x), say.

Then KC(y, x, z1) has a perfect matching, namely (t, x, z1), (x2, x, v), [z1, x, y],

(y, x, t′) are matched to xy, xz1, xx2, xv, respectively. If C(x) ≺ {(x2, x, v)(z1, x,

z1), (y, x, y)}, then KC(z1, x, z1) has a perfect matching which matches (t, x, z1),

(x2, x, v), (y, x, y), (z1, x, t′) to xy, xz1, xx2, xv, respectively.

Assume d(x) ≥ 5 hereafter. In the case when LC(x2, x, v) has a perfect

matching, say, M , let xy be matched to (w1, x, w2) by M , where w1, w2 ∈
N(x)−{x2, v, y}. Deleting {(w1, x, w2), xy} from M and then adding {(w1, x, w2),

xx2}, {(t, x, v), xy} and {(x2, x, t′), xv} yields a perfect matching of KC(x2, x, v)

satisfying (ii) in Claim 2.

Suppose LC(x2, x, v) has no perfect matchings. Similar to Lemma 1, we can

prove that d(x) = 5 and C(x) contains twin visits. Denote by z1, z2 �= y, v, x2

the other two neighbours of x. Let (w1, x, w2) be one of the twin visits in C(x),

where w1, w2 ∈ {y, z1, z2} are distinct, and let w3 denote the unique vertex in

{y, z1, z2} − {w1, w2}. Then C(x) ≺ {(x2, x, v), (w1, x, w2), [w1, x, w2], (w3, x,

w3)}. Since w1 and w2 are distinct, one of them, say, w2, is not equal to y.
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Thus KC(w1, x, w2) has a perfect matching which matches (t, x, w2), (x2, x, v),

[w1, x, w2], (w3, x, w3), (w1, x, t′) to xy, xw2, xw3, xx2, xv, respectively.

Since HC(z) has a perfect matching for every z �= x, one can see that in

all possibilities above, condition (i) in Claim 2 is satisfied by the underlying

Eulerian tour (which is C or C ′). This proves Claim 2.

Choose an Eulerian tour C∗ : wl, x, w1, w2, w3, . . . , wl of G∗ together with

a visit (wl, x, w1) ∈ C∗(x) satisfying the conditions of Claim 2. Then W =

WC∗(wl, x, w1) : t, x, w1, w2, w3, . . . , wl−1, wl, x, t′. Denote by φ(t, x, w1) (φ(wl,

x, t′), respectively) the arc of G with tail x that is matched to (t, x, w1)

((wl, x, t′), respectively) by a perfect matching of KC∗(wl, x, w1) satisfying (ii)

in Claim 2. Let φ(x,w1, w2) denote the arc matched to (x,w1, w2) in a perfect

matching of HC∗(w1) (= HW (w1)), and let φ(w1, w2, w3), . . ., φ(wl−1, wl, x)

be interpreted similarly. Conditions (i) and (ii) in Claim 2 ensure that

xy = φ(t, x, w1), φ(x,w1, w2), φ(w1, w2, w3), . . . , φ(wl−1, wl, x), φ(wl, x, t′) = xv

is a Hamilton path of X(G) connecting xy and xv. 	


Lemma 3 Under the condition of Theorem 3, for distinct xy, uv ∈ A(G) with

x �= u, there exists a Hamilton path of X(G) between xy and uv.

Proof We have five possibilities to consider: x = v and y = u; x, y, u, v are

pairwise distinct; x = v and y �= u; y = v and x �= u; y = u and x �= v. The

following treatment covers all of them.

By our assumption there exists a path of odd length connecting x and u

in G. Let

P : x = x0, x1, x2, . . . , xl−1, xl = u (2)

be such a path with shortest (odd) length l ≥ 1. (It may happen that y =

x1 and/or v = xl−1.) Define G∗ to be the multigraph obtained from G by

doubling each edge of G outside of P and tripling each edge {xj , xj+1} for

j = 1, 3, . . . , l−2. Then d∗(x) = 2d(x)−1, d∗(u) = 2d(u)−1 and d∗(z) = 2d(z)

for z �= x, u.
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Let G∗
x,u(t, t′) be the multigraph obtained from G∗ by adding two new

vertices t, t′ and joining them to x, u respectively by a single edge. Then all

vertices of G∗
x,u(t, t′) except t and t′ have even degrees in G∗

x,u(t, t′). Hence

G∗
x,u(t, t′) has Eulerian trails connecting t and t′.

Since δ(G) ≥ 3, we can choose x′ to be a neighbour of x other than y and x1,

and u′ a neighbour of u other than v and xl−1. In addition, if d(x) = d(u) = 3,

y = x1 and v = xl−1, say, N(x) = {y, x′, z} and N(u) = {v, u′, w}, then we

can choose x′ and u′ in such a way that the edges {x, z} and {u,w} do not

form an edge cut of G. In fact, if {{x, z}, {u,w}} is an edge cut of G in this

case, then since G is assumed to be 2-edge connected, G−{{x, z}, {u,w}} has

two connected components, say, G0 and G1 with z, w ∈ V (G0) and P in G1.

Since x′ is in G1 and removal of {x, x′} does not disconnect G, one can see

that {{x, x′}, {u,w}} is not an edge-cut of G. Thus interchanging the roles of

x′ and z produces the desired x′ and u′. (In general, at most one of x′ and u′

lies on P since P is a path between x and u with minimum odd length.)

With x′ and u′ as above, let

W ′ : t, x, x′,
P︷ ︸︸ ︷

x, x1, x2, . . . , xl−1, u, u′, u, t′,

where P is the path given in (2). Then W ′ is a trail of G∗
x,u(t, t′). Let W be

an Eulerian trail of G∗
x,u(t, t′) obtained by extending W ′ to cover all edges of

G∗
x,u(t, t′) while maintaining (t, x, x′) and (u′, u, t′) as its first and last visits

respectively. Such a trail W exists because removing the four edges in (t, x, x′)

and (u′, u, t′) from G∗
x,u(t, t′) results in a connected multigraph with x′ and

u′ as the only odd-degree vertices. In addition, if d(x) = 3 and y = x1, say,

N(x) = {y, x′, z}, since {{x, z}, {u,w}} is not an edge cut of G by our choices

of x′ and u′, we can choose W in such a way that (x′, x, x1) is a visit induced

by W ; similarly, we can choose W such that (u′, u, xl−1) is a visit induced

by W , if d(u) = 3 and v = xl−1, say, N(u) = {v, u′, w}. (Such a W can

be constructed as follows: extend W ′ to an Eulerian trail of the multigraph

obtained by deleting the parallel edges between x and z and/or that between
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u and w, and then insert the visits (z, x, z) and/or (w, u,w) to this trail.) In

this way we obtain an Eulerian trail W of G∗
x,u(t, t′) such that

(A) (t, x, x′) and (u′, u, t′) are its first and last visits, respectively; and

(B) if d(x) = 3 and y = x1, say, N(x) = {y, x′, z}, then (x′, x, x1) ∈ W (x); and,

if d(u) = 3 and v = xl−1, say, N(u) = {v, u′, w}, then (u′, u, xl−1) ∈ W (x).

Similar to Claim 1, one can show that there exists an Eulerian trail of

G∗
x,u(t, t′), denoted by W hereafter, satisfying (A), (B) and

(C) HW (z) has a perfect matching for every z ∈ V (G) − {x, u}.

Note that |W (z)| = |A(z)| = d(z) for every z ∈ V (G).

Claim 3. There exists an Eulerian trail W ∗ of G∗
x,u(t, t′) such that (i)

(t, x, x′) and (u′, u, t′) are its first and last visits, respectively; (ii) HW ∗(x) has

a perfect matching under which (t, x, x′) is matched to xy; (iii) HW ∗(u) has

a perfect matching under which (u′, u, t′) is matched to uv; and (iv) HW ∗(z)

has a perfect matching for every z ∈ V (G) − {x, u}.

Proof of Claim 3. Let p = (t, x, x′) denote the first visit of W , and let

LW (x) = HW (x) − {p, xy} be the subgraph of HW (x) obtained by deleting

vertices p and xy. For S ⊆ W (x) − {p}, denote by NLW (x)(S) the neighbour-

hood of S in LW (x).

Case (a): y �= x1. If d(x) ≥ 5, then |NLW (x)(S)| ≥ |S| for any S, and so

LW (x) contains a perfect matching by Hall’s marriage theorem.

Suppose d(x) = 4. Then |NLW (x)(S)| ≥ |S| for every S with |S| = 1 or 3.

Suppose |S| = 2 and S = {(a, x, b), (a′, x, b′)}. Then NLW (x)(S) = [(A(x) −
{xy})−{xa, xb}]∪ [(A(x)−{xy})−{xa′, xb′}] = [(A(x)−{xy})]−({xa′, xb′}∩
{xa, xb}). Thus, if |{xa′, xb′} ∩ {xa, xb}| ≤ 1, then |NLW (x)(S)| ≥ |S|. If

|{xa′, xb′} ∩ {xa, xb}| = 2, then {a, b} = {a′, b′} and {x′, x1} ∩ {a, b} = ∅,

which implies y ∈ {a, b} and |NLW (x)(S)| = |(A(x) − {xa, xb}| = 2. Hence

LW (x) contains a perfect matching by Hall’s theorem.

Suppose d(x) = 3. Then W (x) = {p, (x′, x, y), (y, x, x1)} or W (x) = {p,

(x′, x, x1), (y, x, y)}. In the former case LW (x) clearly has a perfect matching.
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In the latter case, apply the bow-tie operation to W with respect to (x′, x, x1)

and (y, x, y) to obtain a new Eulerian trail W0 such that LW0(x) has a perfect

matching.

Case (b): y = x1. Similar to Case (a), if d(x) ≥ 5, then LW (x) has a perfect

matching. If d(x) = 4, let N(x) = {x′, x1, z1, z2}. Then |NLW (x)(S)| ≥ |S| un-

less S = {(z1, x, z2), [z1, x, z2]}. In this exceptional case, W (x) = {p, (x′, x, x1),

(z1, x, z2), [z1, x, z2]}, and we apply the bow-tie operation to W with respect

to (x′, x, x1) and (z1, x, z2) to obtain a new Eulerian trail W0. One can show

that LW0(x) has a perfect matching.

If d(x) = 3, let N(x) = {x′, x1, z}. By (B), (x′, x, x1) is a visit to x in-

duced by W . Hence W (x) = {p, (x′, x, x1), (z, x, z)} and LW (x) has a perfect

matching.

So far we have proved that there exists an Eulerian trail W1 of G∗
x,u(t, t′)

(which is either W or W0) satisfying (A) such that LW1(x) has a perfect

matching. This matching together with the edge between (t, x, x′) and xy

is a perfect matching of HW1(x). Moreover, since W satisfies (C), from the

proof above one can see that W1 satisfies (C) as well. If HW1(u) has a perfect

matching which matches (u′, u, t′) to uv, then set W ∗ = W1 and we are done.

Otherwise, beginning with W1 and using similar arguments as above, we can

construct an Eulerian trail W ∗ of G∗
x,u(t, t′) satisfying all requirements in

Claim 3. This completes the proof of Claim 3.

Similar to the proof of Lemma 2, we can show that the Eulerian trail W ∗

in Claim 3 produces a Hamilton path in X(G) connecting xy and uv. 	


Proof of Theorem 3 This follows from Lemmas 2 and 3 immediately. 	

In the proof of Theorem 4 we will use the following lemma which may be

known in the literature. We give its proof since we are unable to allocate a

reference.

Lemma 4 In any Hamilton-connected graph with at least four vertices, there

exists a path of odd length connecting any two distinct vertices.
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Proof Let G be such a graph. Then for any distinct u, v ∈ V (G) there exists

a Hamilton path P : u = x0, x1, x2, . . . , xn−1, xn = v, where n = |V (G)|−1. It

suffices to consider the case when n is even. Denote A = {x0, x2, . . . , xn} and

B = {x1, x3, . . . , xn−1}. Since {A,B} is a partition of V (G) and any bipartite

graph other than K2 is not Hamilton-connected, there exist adjacent vertices

xi, xj both in A or B, where j ≥ i+2. Thus x0, x1, . . . , xi−1, xi, xj , xj+1, . . . , xn

is a path of odd length between u and v. 	

Proof of Theorem 4 It can be verified that any Hamilton-connected graph

with at least four vertices is 2-edge connected and has minimum degree at least

three. Hence Theorem 3 and Lemma 4 together imply that the 3-arc graph of

such a graph is Hamilton-connected (with more than four vertices). Applying

this iteratively, we obtain Theorem 4. 	
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