2,333 research outputs found
Fire responses and resistance of concrete-filled steel tubular frame structures
This paper presents the results of dynamic responses and fire resistance of concretefilled
steel tubular (CFST) frame structures in fire conditions by using non-linear finite element
method. Both strength and stability criteria are considered in the collapse analysis. The frame
structures are constructed with circular CFST columns and steel beams of I-sections. In order to
validate the finite element solutions, the numerical results are compared with those from a fire
resistance test on CFST columns. The finite element model is then adopted to simulate the
behaviour of frame structures in fire. The structural responses of the frames, including critical
temperature and fire-resisting limit time, are obtained for the ISO-834 standard fire. Parametric
studies are carried out to show their influence on the load capacity of the frame structures in fire.
Suggestions and recommendations are presented for possible adoption in future construction and
design of these structures
Bipartite graph partitioning and data clustering
Many data types arising from data mining applications can be modeled as
bipartite graphs, examples include terms and documents in a text corpus,
customers and purchasing items in market basket analysis and reviewers and
movies in a movie recommender system. In this paper, we propose a new data
clustering method based on partitioning the underlying bipartite graph. The
partition is constructed by minimizing a normalized sum of edge weights between
unmatched pairs of vertices of the bipartite graph. We show that an approximate
solution to the minimization problem can be obtained by computing a partial
singular value decomposition (SVD) of the associated edge weight matrix of the
bipartite graph. We point out the connection of our clustering algorithm to
correspondence analysis used in multivariate analysis. We also briefly discuss
the issue of assigning data objects to multiple clusters. In the experimental
results, we apply our clustering algorithm to the problem of document
clustering to illustrate its effectiveness and efficiency.Comment: Proceedings of ACM CIKM 2001, the Tenth International Conference on
Information and Knowledge Management, 200
KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.
KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations
An Optimized Round-Robin Scheduling of Speakers for Peers-to-Peers-Based Byzantine Faulty Tolerance
© 2018 IEEE. Blockchain technology has been showing its strong performance on decentralized security when integrating with Internet of Things network. However, the trilemma of scalability-security-decentralization exists in Blockchain-based IoT. Therein the typical round-robin scheduling implemented in the Byzantine Faulty Tolerance (BFT) proposed by Neo's Blockchain has a significant delay when consecutive faulty miners exist. This paper proposes a novel analysis model for evaluating the network performance collapse in general, followed by an optimized round-robin scheduling for the case when the mutual latency difference is not significant enough for ranking. Based on the model, the optimized mechanism is able to increase the block rate for a specific subset of consecutive faulty miners by nearly 50% and provide a linearly positive growth rate of the mitigation with respect to the fail rate of a single miner, which strongly promotes the efficiency of the P2P-based BFT consensus algorithm
Electrohydrodynamic jet printing of PZT thick film micro-scale structures
This paper reports the use of a printing technique, called electrohydrodynamic jet printing, for producing PZT thick film micro-scale structures without additional material removing processes. The PZT powder was ball-milled and the effect of milling time on the particle size was examined. This ball-milling process can significantly reduce the PZT particle size and help to prepare stable composite slurry suitable for the E-Jet printing. The PZT micro-scale structures with different features were produced. The PZT lines with different widths and separations were fabricated through the control of the E-Jet printing parameters. The widths of the PZT lines were varied from 80 μm to 200 μm and the separations were changed from 5 μm to 200 μm. In addition, PZT walled structures were obtained by multi-layer E-Jet printing. The E-Jet printed PZT thick films exhibited a relative permittivity (ɛr) of ∼233 and a piezoelectric constant (d33, f) of ∼66 pC N−1
A genuine maximally seven-qubit entangled state
Contrary to A.Borras et al.'s [1] conjecture, a genuine maximally seven-qubit
entangled state is presented. We find a seven-qubit state whose marginal
density matrices for subsystems of 1,2- qubits are all completely mixed and for
subsystems of 3-qubits is almost completely mixed
Attack and Defence of Ethereum Remote APIs
© 2018 IEEE. Ethereum, as the first Turing-complete blockchain platform, provides various application program interfaces for developers. Although blockchain has highly improved security, faulty configuration and usage can result in serious vulnerabilities. In this paper, we focus on the security vulnerabilities of the official Go-version Ethereum client (geth). The vulnerabilities are because of the insecure API design and the specific Ethereum wallet mechanism. We demonstrate attacks exploiting these vulnerabilities in an Ethereum testbed. The vulnerabilities are confirmed by the scanning results on the public Internet. Finally, corresponding countermeasures against attacks are provided to enhance the security of the Ethereum platform
Genetic characterization of the nine medicinal Dendrobium species using RAPD
The nine species of Dendrobium were distinguished from each other by the banding pattern generated by the sixteen 10-mer oligonucleotide primers in the random amplified polymorphic DNA (RAPD) reaction. Distinctive bands generated from the nine species were observed. RAPD analysis was also applied to estimate the genetic relationship among the nine species. A dendrogram was constructed based on a data matrix of 323 polymorphic bands originated by the sixteen random primers. Four groups were identified, one consisting of Dendrobium huoshanense and Dendrobium loddigesii, the second consisting of Dendrobium bellatulum and Dendrobium fimbriatum. The third cluster contained Dendrobium candidum, Dendrobium densiflorum and Dendrobium exile. The rest were grouped in the fourth cluster. The principal coordinate analysis (PCA), that is, the plot drawn on the basis of the RAPD data, clearly distinguished the nine species into four groups, which also support the notion in thedendrogram described above
- …