6,686 research outputs found

    Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter

    Get PDF
    Context. Scattering polarization in the Sr I 4607.3 Å line observed with high resolution is an important diagnostic of the Sun's atmosphere and magnetism at small spatial scales. Investigating the scattering polarization altered by the Hanle effect is key to constraining the role of small-scale magnetic activity in solar atmospheric activity and energy balance. At present, spatially resolved observations of this diagnostic are rare and have not been reported as close to the disk center as for μ = 0.6. Aims. Our aim is to measure the scattering polarization in the Sr I line at μ = 0.6 and to identify the spatial fluctuations with a statistical approach. Methods. Using the Fast Solar Polarimeter (FSP) mounted on the TESOS filtergraph at the German Vacuum Tower Telescope (VTT) in Tenerife, Spain, we measured both the spatially resolved full Stokes parameters of the Sr I line at μ = 0.6 and the center-to-limb variation of the spatially averaged Stokes parameters. Results. We find that the center-to-limb variation of the scattering polarization in the Sr I line measured with FSP is consistent with previous measurements. A statistical analysis of Stokes Q/I (i.e., the linear polarization component parallel to the solar limb), sampled with 0.16″ pixel-1 in the line core of Sr I reveals that the signal strength is inversely correlated with the intensity in the continuum. We find stronger linear polarimetric signals corresponding to dark areas in the Stokes I continuum image (intergranular lanes). In contrast, independent measurements at μ = 0.3 show a positive correlation of Q/I with respect to the continuum intensity. We estimate that the subregion diameter responsible for the excess Q/I signal is on the order of 0.5″-1″. Conclusions. The presented observations and the statistical analysis of Q/I signals at μ = 0.6 complement reported scattering polarization observations as well as simulations. The FSP has proven to be a suitable instrument to measure spatially resolved scattering polarization signals. In the future, a systematic center-to-limb series of observations with subgranular spatial resolution and increased polarimetric sensitivity (<10-3) compared to that in the present study is needed in order to investigate the change in trend with μ that the comparison of our results with the literature suggests.Fil: Zeuner, F.. Universität Göttingen; Alemania. Institut für Sonnensystemforschung; AlemaniaFil: Feller, A.. Institut für Sonnensystemforschung; AlemaniaFil: Iglesias, Francisco Andres. Institut für Sonnensystemforschung; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Solanki, S.K.. Institut für Sonnensystemforschung; Alemania. Kyung Hee University; Corea del Su

    Riss or Würm?

    Get PDF
    Die Klimaschwankungen des jüngeren Pleistozäns werden anhand von drei unabhängigen Gruppen von Beobachtungsmaterial besprochen, nämlich von Schwankungen des Meeresspiegels, den Terrassenunterkanten der Themse und den fossilen Böden der Lößzone von Nordfrankreich bis Niederösterreich. Die gleiche Abfolge von Klimaphasen ergibt sich in jedem Falle. Das Letzte Interglazial weist in der Mitte eine leichte Schwankung auf und war zeitweilig sommer-wärmer als heute. Die folgende Kaltphase war kurz, aber intensiv (Meeresspiegel ca. —100 m), und auf sie folgte eine Warmphase mit durchaus gemäßigtem Klima (Halling-Stage der Themse), welche oft mit dem Letzten Interglazial verwechselt wird. Auf diese Phase folgt die Vereisungsgruppe Weichsel-Wurm. Die vorausgehende Kaltphase wird oft als Jungriß bezeichnet, doch ist Würm I vorzuziehen, da das vorausgehende Interglazial länger war als das Interstadial zwischen der fraglichen Phase und dem jüngeren Würmkomplex.researc

    Entanglement swapping with photons generated on-demand by a quantum dot

    Full text link
    Photonic entanglement swapping, the procedure of entangling photons without any direct interaction, is a fundamental test of quantum mechanics and an essential resource to the realization of quantum networks. Probabilistic sources of non-classical light can be used for entanglement swapping, but quantum communication technologies with device-independent functionalities demand for push-button operation that, in principle, can be implemented using single quantum emitters. This, however, turned out to be an extraordinary challenge due to the stringent requirements on the efficiency and purity of generation of entangled states. Here we tackle this challenge and show that pairs of polarization-entangled photons generated on-demand by a GaAs quantum dot can be used to successfully demonstrate all-photonic entanglement swapping. Moreover, we develop a theoretical model that provides quantitative insight on the critical figures of merit for the performance of the swapping procedure. This work shows that solid-state quantum emitters are mature for quantum networking and indicates a path for scaling up.Comment: The first four authors contributed equally to this work. 17 pages, 3 figure

    Dissipation in ferrofluids: Mesoscopic versus hydrodynamic theory

    Full text link
    Part of the field dependent dissipation in ferrofluids occurs due to the rotational motion of the ferromagnetic grains relative to the viscous flow of the carrier fluid. The classical theoretical description due to Shliomis uses a mesoscopic treatment of the particle motion to derive a relaxation equation for the non-equilibrium part of the magnetization. Complementary, the hydrodynamic approach of Liu involves only macroscopic quantities and results in dissipative Maxwell equations for the magnetic fields in the ferrofluid. Different stress tensors and constitutive equations lead to deviating theoretical predictions in those situations, where the magnetic relaxation processes cannot be considered instantaneous on the hydrodynamic time scale. We quantify these differences for two situations of experimental relevance namely a resting fluid in an oscillating oblique field and the damping of parametrically excited surface waves. The possibilities of an experimental differentiation between the two theoretical approaches is discussed.Comment: 14 pages, 2 figures, to appear in PR

    Giant Nonlinear Optical Activity from Planar Metasurfaces

    Get PDF
    Second harmonic generation circular dichroism (CD) is more sensitive to the handedness of chiral materials than its linear optical counterpart. In this work, we show that 3D chiral structures are not necessary for introducing strong CD for harmonic generations. Specifically, we demonstrate giant CD for both second harmonic generation and third harmonic generation on suitably designed ultrathin plasmonic metasurfaces. It is experimentally and theoretically verified that the overwhelming contribution to this nonlinear CD is of achiral origin. The results shed new light on the origin of the nonlinear CD effect in achiral planar surfaces

    Comment on "Magnetoviscosity and relaxation in ferrofluids"

    Full text link
    It is shown and discussed how the conventional system of hydrodynamic equations for ferrofluids was derived. The set consists of the equation of fluid motion, the Maxwell equations, and the magnetization equation. The latter was recently revised by Felderhof [Phys. Rev. E, v.62, p.3848 (2000)]. His phenomenological magnetization equation looks rather like corresponding Shliomis' equation, but leads to wrong consequences for the dependence of ferrofluid viscosity and magnetization relaxation time on magnetic field.Comment: 6 pages, 1 figure, Submitted to Phys. Rev.

    Ba3Ga3N5 - A Novel Host Lattice for Eu2+ - Doped Luminescent Materials with Unexpected Nitridogallate Substructure

    Get PDF
    The alkaline earth nitridogallate Ba3Ga3N5 was synthesized from the elements in a sodium flux at 760°C utilizing weld shut tantalum ampules. The crystal structure was solved and refined on the basis of single-crystal X-ray diffraction data. Ba3Ga3N5 (space group C2/c (No. 15), a = 16.801(3), b = 8.3301(2), c = 11.623(2) Å, β = 109.92 (3)°, Z = 8) contains a hitherto unknown structural motif in nitridogallates, namely, infinite strands made up of GaN4 tetrahedra, each sharing two edges and at least one corner with neighboring GaN4 units. There are three Ba2+ sites with coordination numbers six or eight, respectively, and one Ba2+ position exhibiting a low coordination number 4 corresponding to a distorted tetrahedron. Eu2+ - doped samples show red luminescence when excited by UV irradiation at room temperature. Luminescence investigations revealed a maximum emission intensity at 638 nm (FWHM =2123 cm−1). Ba3Ga3N5 is the first nitridogallate for which parity allowed broadband emission due to Eu2+ - doping has been found. The electronic structure of both Ba3Ga3N5 as well as isoelectronic but not isostructural Sr3Ga3N5 was investigated by DFT methods. The calculations revealed a band gap of 1.53 eV for Sr3Ga3N5 and 1.46 eV for Ba3Ga3N5

    Repeated exposure to subinfectious doses of sars-cov-2 may promote t cell immunity and protection against severe covid-19

    Get PDF
    Europe is experiencing a third wave of COVID-19 due to the spread of highly transmissible SARS-CoV-2 variants. A number of positive and negative factors constantly shape the rates of COVID-19 infections, hospitalization, and mortality. Among these factors, the rise in increasingly transmissible variants on one side and the effect of vaccinations on the other side create a picture deeply different from that of the first pandemic wave. Starting from the observation that in several European countries the number of COVID-19 infections in the second and third pandemic wave increased without a proportional rise in disease severity and mortality, we hypothesize the existence of an additional factor influencing SARS-CoV-2 dynamics. This factor consists of an immune defence against severe COVID-19, provided by SARS-CoV-2-specific T cells progressively developing upon natural exposure to low virus doses present in populated environments. As suggested by recent studies, low-dose viral particles entering the respiratory and intestinal tracts may be able to induce T cell memory in the absence of inflammation, potentially resulting in different degrees of immunization. In this scenario, non-pharmaceutical interventions would play a double role, one in the short term by reducing the detrimental spreading of SARS-CoV-2 particles, and one in the long term by allowing the development of a widespread (although heterogeneous and uncontrollable) form of immune protection
    corecore