218 research outputs found

    Reversible addition of the OH radical to p-cymene in the gas phase : kinetic analysis assuming formation of a single adduct. Part 1

    Get PDF
    A flash photolysis-resonance fluorescence (FP-RF) technique was employed to study the kinetics and mechanism of the reaction of OH radicals with p-cymene at temperatures between 297 and 413 K in helium buffer gas. FP-RF experiments involved time-resolved detection of OH radicals by RF following vacuum-UV flash photolysis of H2O–p-cymene–He and H2O–He mixtures. Biexponential functions were fitted to decays of OH radicals according to reversible addition of OH radicals to p-cymene to form a single adduct. A rate constant of (15.7 ± 1.1) × 10−12 is obtained (in units of cm3 s−1) at room temperature (298 K) for the sum of the addition and abstraction channels (k1a + k1b) according to this simplified model. The Arrhenius plot reveals the step function typical of other aromatics and can be described using the expressions: 2 × 10−13 exp(+1300 K/T) at temperatures between 297 K and 324 K and 10−11 exp(−250 K/T) at temperatures between 345 K and 413 K. After consideration of the abstraction channel an equilibrium constant of k1a/k−1a = 6 × 10−26 exp(+9700 K/T) cm3 is obtained at temperatures between 297 and 325 K and 2 × 10−36 exp(+17 000 K/T) cm3 at temperatures between 325 and 380 K

    Kinetic study of the reaction of OH with CH2I2

    Get PDF
    Flash photolysis (FP) coupled to resonance fluorescence (RF) was used to measure the absolute rate coefficients (k1) for the reaction of OH(X2P) radicals with diiodomethane (CH2I2) over the temperature range 295374 K. The experiments involved time-resolved RF detection of the OH (A2∑+→X2Π transition at λ = 308 nm) following FP of the H2O/CH2I 2/He mixtures. The OH(X2Π) radicals were produced by FP of H2O in the vacuum-UV at wavelengths l 4 120 nm. Decays of OH radicals in the presence of CH2I2 are observed to be exponential, and the decay rates are found to be linearly dependent on the CH2I 2 concentration. The results are described by the Arrhenius expression k1(T) = (4.2 ± 0.5) × 1011 exp[-(670 ± 20)K/T] cm3 molecule-1 s-1. The implications of the reported kinetic results for understanding the atmospheric chemistry of CH2I2 are discussed. © 2011 the Owner Societies

    Gas-Phase Reaction Kinetics of the Ortho and Ipso Adducts 1,2,4,5-Tetramethylbenzene-OH with O-2

    Get PDF
    The reversible reaction of OH radicals with 1,2,4,5-tetramethylbenzene (1245-TeMB, durene) leads to adducts at the substituted (ipso) and unsubstituted (ortho) positions of the ring. By the use of flash photolysis for production and resonance fluorescence for detection of OH, the gas-phase reactions of O-2 with these adducts were investigated over the temperature range of 300-340 K in He at 200 mbar. The decay of OH, generated by pulsed vacuum-UV photolysis of H2O, was monitored under slow-flow conditions in the presence of 1245-TeMB and O-2 at concentrations of up to 19 X 10(12) CM-3 and 2 X 10(16) cm(-3), respectively. Triexponential OH decays resulted from the unimolecular decomposition of the two adducts, representing OH reservoirs with different stabilities. In the presence of O-2, additional adduct loss pathways exist, leading to faster OH consumption. Triexponential functions fitted to these decays were analyzed to obtain rate constants for the reactions of O-2 with both adducts. Rate constants in the range of (4-13) x 10(-15) and (0.3-3) x 10(-15) cm(3)s(-1) were obtained for the ortho and the ipso adducts, respectively, depending on temperature and assumptions regarding details of the underlying mechanism of adduct isomer formation and isomerization. At O-2 concentrations exceeding about 1 x 10(16) cm(-3), deviations from a linear dependence of the adduct loss rates on the O-2 concentration indicate an even more complex mechanism. The validity of the rate constants is therefore confined to O-2 concentrations below 1 X 10(16) cm(-3). The adduct + O-2 rate constants for 1245-TeMB are greater than the corresponding previously obtained rate constants for benzene, toluene, and p- and m-xylene but smaller than those for hexamethylbenzene. The results are discussed in terms of the current knowledge about the mechanism of OH-induced degradation of aromatic compounds in the presence of O-2

    A new purge and trap headspace technique to analyze low volatile compounds from fluid inclusions of rocks and minerals

    Get PDF
    A new method for the analysis of trace gases from fluid inclusions of minerals has been developed. The purge and trap GC-MS system is based on the system described by Nolting et al. (1988) and was optimized for the analyses of halogenated volatile organic compounds (VOCs) having boiling points as low as -128. °C (carbon tetrafluoride).The sample preconcentration cold trap consists of a U-shaped glass lined steel tube (GLTℱ), that is immersed into a small liquid nitrogen Dewar vessel for cooling. A rapid desorption step heats up the preconcentration tube in <30s from -196°C to 200°C. The process is carried out by using a pressurized air stream to dissipate the liquid nitrogen followed by resistive heating of the trap. The design of the cold trap and the direct transfer of desorbed analytes onto the GC column via a deactivated capillary column retention gap made sample refocusing within the GC oven unnecessary. Furthermore, a special air-tight grinding device was developed in which samples ranging from soft halite (hardness 2, Mohs scale) to hard quartz (hardness 7) are effectively ground to average diameters of 1000nm or below, thereby releasing gases from fluid inclusions of minerals. The gases are then purged from the grinding chamber with a He carrier gas flow. The detection and quantitative determination of gases, such as SF6 and CF4 released from fluorites and CH3Cl from halite samples is demonstrated.DFG/FOR/76

    The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol

    Get PDF
    Abstract. Experiments on salt aerosol with different salt contents were performed in a Teflon chamber under tropospheric light conditions with various initial contents of nitrogen oxides (NOx = NO + NO2). A strong activation of halogens was found at high NOx mixing ratios, even in samples with lower bromide contents such as road salts. The ozone depletion by reactive halogen species released from the aerosol, was found to be a function of the initial NOx mixing ratio. Besides bromine, large amounts of chlorine have been released in our smog chamber. Time profiles of the halogen species Cl2, Br2, ClNO2, BrNO2 and BrO, ClO, OClO and Cl atoms were simultaneously measured by various techniques (chemical ionization mass spectrometry, differential optical absorption spectrometry coupled with a multi-reflection cell and gas chromatography of hydrocarbon tracers for Cl and OH, employing cryogenic preconcentration and flame ionization detection). Measurements are compared to calculations by the CAABA/MECCA 0-D box model, which was adapted to the chamber conditions and took the aerosol liquid water content and composition into account. The model results agree reasonably with the observations and provide important information about the prerequisites for halogen release, such as the time profiles of the aerosol bromide and chloride contents as well as the aerosol pH.</jats:p

    Rate Constants for the Reaction of OH Radicals with Hydrocarbons in a Smog Chamber at Low Atmospheric Temperatures

    Get PDF
    The photochemical reaction of OH radicals with the 17 hydrocarbons n-butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, cyclooctane, 2,2-dimethylbutane, 2,2-dimethylpentane, 2,2-dimethylhexane, 2,2,4-trimethylpentane, 2,2,3,3-tetramethylbutane, benzene, toluene, ethylbenzene, p-xylene, and o-xylene was investigated at 288 and 248 K in a temperature controlled smog chamber. The rate constants were determined from relative rate calculations with toluene and n-pentane as reference compounds, respectively. The results from this work at 288 K show good agreement with previous literature data for the straight-chain hydrocarbons, as well as for cyclooctane, 2,2-dimethylbutane, 2,2,4-trimethylpentane, 2,2,3,3-tetramethylbutane, benzene, and toluene, indicating a convenient method to study the reaction of OH radicals with many hydrocarbons simultaneously. The data at 248 K (k in units of 10&minus;12 cm3 s&minus;1) for 2,2-dimethylpentane (2.97 &plusmn; 0.08), 2,2-dimethylhexane (4.30 &plusmn; 0.12), 2,2,4-trimethylpentane (3.20 &plusmn; 0.11), and ethylbenzene (7.51 &plusmn; 0.53) extend the available data range of experiments. Results from this work are useful to evaluate the atmospheric lifetime of the hydrocarbons and are essential for modeling the photochemical reactions of hydrocarbons in the real troposphere

    Exploring the planetary boundary for chemical pollution

    Get PDF
    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if “unacceptable global change” is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social approaches to mitigate global chemical pollution that emphasize a preventative approach; coordinate pollution control and sustainability efforts; and facilitate implementation of multiple (and potentially decentralized) control efforts involving scientists, civil society, government, non-governmental organizations and international bodies

    Natural formation of chloro- and bromoacetone in salt lakes of Western Australia

    Get PDF
    Western Australia is a semi-/arid region known for saline lakes with a wide range of geochemical parameters (pH 2.5-7.1, Cl- 10-200 g L-1. This study reports on the haloacetones chloro- and bromoacetone in air over 6 salt lake shorelines. Significant emissions of chloroacetone (up to 0.2 ”mol m-2 h-1) and bromoacetone (up to 1. 5 ”mol m-2 h-1) were detected, and a photochemical box model was employed to evaluate the contribution of their atmospheric formation from the olefinic hydrocarbons propene and methacrolein in the gas phase. The measured concentrations could not explain the photochemical halogenation reaction, indicating a strong hitherto unknown source of haloacetones. Aqueous-phase reactions of haloacetones, investigated in the laboratory using humic acid in concentrated salt solutions, were identified as alternative formation pathway by liquid-phase reactions, acid catalyzed enolization of ketones, and subsequent halogenation. In order to verify this mechanism, we made measurements of the Henry's law constants, rate constants for hydrolysis and nucleophilic exchange with chloride, UV-spectra and quantum yields for the photolysis of bromoacetone and 1,1-dibromoacetone in the aqueous phase. We suggest that heterogeneous processes induced by humic substances in the quasi-liquid layer of the salt crust, particle surfaces and the lake water are the predominating pathways for the formation of the observed haloacetones
    • 

    corecore