30 research outputs found

    The last European varanid: demise and extinction of monitor lizards (Squamata, Varanidae) from Europe

    Get PDF
    Remains of a varanid lizard from the middle Pleistocene of the Tourkobounia 5 locality near Athens, Greece are described. The new material comprises cranial elements only (one maxilla, one dentary, and one tooth) and is attributed to Varanus, the genus to which all European Neogene varanid occurrences have been assigned. Previously, the youngest undisputed varanid from Europe had been recovered from upper Pliocene sediments. The new Greek fossils therefore constitute the youngest records of this clade from the continent. Despite being fragmentary, this new material enhances our understanding of the cranial anatomy of the last European monitor lizards and is clearly not referable to the extant Varanus griseus or Varanus niloticus, the only species that could be taken into consideration on a present-day geographic basis. However, these fossils could represent a survivor of the monitor lizards of Asian origin that inhabited Europe during the Neogene

    New material of Laophis crotaloides, an enigmatic giant snake from Greece, with an overview of the largest fossil European vipers

    Get PDF
    Laophis crotaloides was described by Richard Owen as a new and very large fossil viperid snake species from Greece. The type material is apparently lost and the taxon was mostly neglected for more than a century. We here describe a new partial viperid vertebra, collected from the same locality and of equivalent size to the type material. This vertebra indicates that at least one of the three morphological characters that could be used to diagnose L. crotaloides is probably an artifact of the lithographer who prepared the illustration supporting the original description. A revised diagnosis of L. crotaloides is provided on the basis of the new specimen. Despite the fragmentary nature of the new vertebra, it confirms the validity of L. crotaloides, although its exact relationships within Viperidae remain unknown. The new find supports the presence of a large viperid snake in the early Pliocene of northern Greece, adding further data to the diversity of giant vipers from Europe

    A new species of Varanus (Anguimorpha: Varanidae) from the early Miocene of the Czech Republic, and its relationships and palaeoecology

    Get PDF
    Skeletal remains of a new early Miocene (Ottnangian, MN 4 mammal zone) monitor lizard, Varanus mokrensis sp. nov., are described from two karst fissures in the Mokrá-Western Quarry (1/2001 Turtle Joint; 2/2003 Reptile Joint), Czech Republic, providing the first documented example of a European varanid for which osteological data permit a well-supported assignment to the genus Varanus. The new species is morphologically similar to the Recent Indo-Asiatic varanids of the Varanus bengalensis group. It differs from all other Varanus species on the basis of a single autapomorphy and a combination of 11 characters. As a distinguishing feature of V. mokrensis, the parietal and squamosal processes of the postorbitofrontal form a narrowly acute angle. The teeth show distinct, smooth cutting edges along the mesial and distal margins of the apical portion of their crowns. This feature is not observed in most extant Asiatic Varanus species and may represent a plesiomorphic condition. The results of parsimony phylogenetic analyses, with and without character reweighting, reveal poor resolution within Varanus. A Bayesian analysis shows V. mokrensis to be closely related to extant representatives of the Indo-Asiatic Varanus clade, with close affinities to the V. bengalensis species group. The topology of the Bayesian tree supports the hypothesis that Miocene monitors from Mokrá are representatives of a lineage that is ancestral to the well-defined clade of extant African varanids, including the early Miocene V. rusingensis. In addition, our results support a Eurasian origin for the varanid clade. The extant African Varanus species probably originated in the late Oligocene. The radiation of African varanids probably occurred during the late Oligocene to early Miocene time interval. The occurrence of Varanus in the early Miocene of Mokrá-Western Quarry corresponds to the warm phase of the Miocene Climatic Optimum. Remains of a diverse aquatic and heliophobe amphibian fauna at the 2/2003 Reptile Joint site indicate more humid conditions than those at the 1/2001 Turtle Joint site

    On the question of higher basidial fungi

    No full text

    Seven cases of Wiedemann-Beckwith syndrome, including the first reported case of mosaic paternal isodisomy along the whole chromosome 11

    No full text
    Genomic imprinting of chromosome arm 11p is involved in the Wiedemann-Beckwith syndrome (WBS). About 20% of patients with sporadic WBS have paternal uniparental disomy (UPD) of 11p. Mitotic recombination at the 11p region has been suggested to be responsible for the somatic mosaicism in these patients. Our current study concerning sporadic WBS patients demonstrated six patients with mosaic isodisomy restricted to part of 11p and one patient with mosaic paternal uniparental disomy for the whole chromosome II. Apparently the clinical findings for this patient did not differ from data reported for other WBS patients. This case makes it unlikely that the proximal short arm and the long arm of chromosome 11 contain imprinted genes with a phenotype recognizable prenatally or in infancy, and gives some support to the hypothesis that non-mosaic UPD-11 is prenatally lethal. Am. J. Med. Genet. 79:347-353, 1998. (C) 1998 Wiley-Liss, Inc

    Duplication of (12)(pter-q13.3) combined with deletion of (22)(pter-q11.2) in a patient with features of both chromosome aberrations

    Full text link
    We report a patient with multiple dysmorphic signs and congenital malformations, representing a combination of clinical features of duplication (12p) and deletion (22)(q11.2) syndromes. The girl had overgrowth at birth, showed abnormal cranio-facial findings, cleft uvula, a complex conotruncal heart defect, a polycystic right kidney, and an umbilical hernia. She died at the age of 6 months of cardio-respiratory failure. Cytogenetic examination demonstrated a derivative chromosome 12 replacing one of the two chromosomes 22. The paternal karyotype was normal 46,XY while the mother's karyotype was 46,XX,rcp(12;22)(q13.2;q11.2). According to the published data, all patients with deletion 22q11.2 combined with other unbalanced chromosomal aberration have a more severe clinical expression than those with interstitial deletions

    Torymidae (Hymenoptera, Chalcidoidea) revised: molecular phylogeny, circumscription and reclassification of the family with discussion of its biogeography and evolution of life-history traits

    No full text
    International audienceA phylogeny of the Torymidae (Chalcidoidea) is estimated using 4734 nucleotides from five genes. Twelve outgroups and 235 ingroup taxa are used, representing about 70% of the recognized genera. Our analyses do not recover Torymidae as monophyletic and we recognize instead two families: Megastigmidae (stat. rev.) and Torymidae s.s. (stat. rev.). Within Torymidae s.s., we recognize six subfamilies and six tribes, including Chalcimerinae, Glyphomerinae and Microdontomerinae (subf. nov.), and two new tribes: Boucekinini and Propalachiini (trib. nov.). Seven unclassified genera (i.e. Cryptopristus, Echthrodape, Exopristoides, Exopristus, part of Glyphomerus, Thaumatorymus, Zaglyptonotus) are assigned to tribes within our new classification. Five genera are restored from synonymy—Ameromicrus and Didactyliocerus from under Torymoides (stat. rev.), Iridophaga and Iridophagoides from under Podagrionella (stat. rev.) and Nannocerus from under Torymus (stat. rev.)—and three genera are synonymized—Allotorymus under Torymussyn. nov., Ditropinotus under Eridontomerussyn. nov. and Pseuderimerus under Erimerussyn. nov. A Palaearctic or Eurasian origin for Torymidae is proposed. The ancestral area of Megastigmidae is indicated as the Australian region. The most probable ancestral life strategy for Torymidae s.s. is ectoparasitism on gall‐forming Cynipidae. The life strategy and putative hosts of the common ancestor of Megastigmidae remain uncertain
    corecore