46 research outputs found

    Tools for communicating agricultural drought over the Brazilian Semiarid using the soil moisture index

    Get PDF
    Soil moisture over the Brazilian semiarid region is presented in different visualizations that highlight spatial, temporal and short-term agricultural risk. The analysis used the Soil Moisture Index (SMI), which is based on a normalization of soil moisture by field capacity and wilting point. The index was used to characterize the actual soil moisture conditions into categories from severe drought to very wet. In addition, the temporal evolution of SMI was implemented to visualize recent trends in short-term drought and response to rainfall events at daily time steps, as new data are available. Finally, a visualization of drought risk was developed by considering a critical value of SMI (assumed as 0.4), below which water stress is expected to be triggered in plants. A novel index based on continuous exposure to critical SMI was developed to help bring awareness of real time risk of water stress over the region: the Index of Stress in Agriculture (ISA). The index was tested during a drought over the region and successfully identified locations under water stress for periods of three days or more. The monitoring tools presented here help to describe the real time conditions of drought over the region using daily observations. The information from those tools support decisions on agricultural management such as planting dates, triggering of irrigation, or harvesting.Peer ReviewedPostprint (published version

    A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis

    Get PDF
    In this work, a metabolomics dataset from 1H nuclear magnetic resonance spectroscopy of Brazilian propolis was analyzed using machine learning algorithms, including feature selection and classification methods. Partial least square-discriminant analysis (PLS-DA), random forest (RF), and wrapper methods combining decision trees and rules with evolutionary algorithms (EA) showed to be complementary approaches, allowing to obtain relevant information as to the importance of a given set of features, mostly related to the structural fingerprint of aliphatic and aromatic compounds typically found in propolis, e.g., fatty acids and phenolic compounds. The feature selection and decision tree-based algorithms used appear to be suitable tools for building classification models for the Brazilian propolis metabolomics regarding its geographic origin, with consistency, high accuracy, and avoiding redundant information as to the metabolic signature of relevant compounds.The work is partially funded by ERDF -European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT (Portuguese Foundation for Science and Technology) within projects ref. COMPETE FCOMP-01-0124-FEDER-015079 and PEstOE/ EEI/UI0752/2011. RC's work is funded by a PhD grant from the Portuguese FCT ( ref. SFRH/BD/66201/2009)

    Impact of soil moisture on crop yields over Brazilian semiarid

    Get PDF
    The objective of this work was to investigate the relationship between soil water content and rainfall with rice, beans, cassava and corn yields in the semiarid region of Northeast Brazil. Precipitation and modeled soil water content were compared to yields recorded at the county levels in this region. The results were also integrated over the area of the nine States that lie within the officially recognized region of semiarid climate in Brazil. The influence of water balance components was quantified by calculating their correlation coefficient with yields of the different crop species over the municipalities of the region. It was found that rainfall had higher correlation to crop yields over most of the region, while soil water content had lower values of correlation. This result is consistent with the fact that average root depth is 40 cm, lower than the layer of soil used in the model used to estimate soil water content (100 cm). Plants respond better to the precipitation in the top layers of soil, while the water storage in the deep layer of soil might be important only in other temporal and spatial scales of the hydrological cycle.Peer ReviewedPostprint (published version

    Metabolic profiling and classification of propolis samples from Southern Brazil: an NMR-based platform coupled with machine learning

    Get PDF
    The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.Financial support for this investigation by National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), Brazilian Biosciences National Laboratory (LNBioCNPEM/MCTI), Foundation for Support of Scientific and Technological Research in the State of Santa Catarina (FAPESC), and Portuguese Foundation for Science and Technology (FCT) is acknowledged. The research fellowship granted by CNPq to the first author is also acknowledged. The work was partially funded by a CNPq and FCT agreement through the PropMine grant

    Tools for Communicating Agricultural Drought over the Brazilian Semiarid Using the Soil Moisture Index

    No full text
    Soil moisture over the Brazilian semiarid region is presented in different visualizations that highlight spatial, temporal and short-term agricultural risk. The analysis used the Soil Moisture Index (SMI), which is based on a normalization of soil moisture by field capacity and wilting point. The index was used to characterize the actual soil moisture conditions into categories from severe drought to very wet. In addition, the temporal evolution of SMI was implemented to visualize recent trends in short-term drought and response to rainfall events at daily time steps, as new data are available. Finally, a visualization of drought risk was developed by considering a critical value of SMI (assumed as 0.4), below which water stress is expected to be triggered in plants. A novel index based on continuous exposure to critical SMI was developed to help bring awareness of real time risk of water stress over the region: the Index of Stress in Agriculture (ISA). The index was tested during a drought over the region and successfully identified locations under water stress for periods of three days or more. The monitoring tools presented here help to describe the real time conditions of drought over the region using daily observations. The information from those tools support decisions on agricultural management such as planting dates, triggering of irrigation, or harvesting

    Analysis of periods with strong and coherent CO2 advection over a forested hill

    Full text link
    Horizontal and vertical advective fluxes of CO2 measured during the CarboEurope-IP advection experiment (ADVEX) at the Wetzstein spruce forest site in Thuringia, Germany, were related to wind direction, stratification regime and friction velocity u*. Measurements of wind speed and direction carried out at one of the slopes of the ridge revealed the existence of reverse flow below the canopy on the downwind side. This uphill flowoccurred concurrently with the advective fluxes measured at the top of the hill. Such result is in agreement with recent modeling works that support the existence of advection at low hills covered with a canopy. Another experimental evidence that suggest a link between advection at this site with the flow over the hill came from the analysis of the horizontal gradient of CO2 inside the volume formed by the ADVEX towers. It was observed that CO2 accumulated near the downwind side of the crest for cross-ridge flows, what is consistent with another modeling work of the transport of scalars across a low hill covered with a canopy
    corecore