137 research outputs found

    The Toxicological Impacts of the Fusarium Mycotoxin, Deoxynivalenol, in Poultry Flocks with Special Reference to Immunotoxicity

    Get PDF
    Deoxynivalenol (DON) is a common Fusarium toxin in poultry feed. Chickens are more resistant to the adverse impacts of deoxynivalenol (DON) compared to other species. In general, the acute form of DON mycotoxicosis rarely occurs in poultry flocks under normal conditions. However, if diets contain low levels of DON (less than 5 mg DON/kg diet), lower productivity, impaired immunity and higher susceptibility to infectious diseases can occur. The molecular mechanism of action of DON has not been completely understood. A significant influence of DON in chickens is the impairment of immunological functions. It was known that low doses of DON elevated the serum IgA levels and affected both cell-mediated and humoral immunity in animals. DON is shown to suppress the antibody response to infectious bronchitis vaccine (IBV) and to Newcastle disease virus (NDV) in broilers (10 mg DON/kg feed) and laying hens (3.5 to 14 mg of DON/kg feed), respectively. Moreover, DON (10 mg DON/kg feed) decreased tumor necrosis factor alpha (TNF-α) in the plasma of broilers. DON can severely affect the immune system and, due to its negative impact on performance and productivity, can eventually result in high economic losses to poultry producers. The present review highlights the impacts of DON intoxication on cell mediated immunity, humoral immunity, gut immunity, immune organs and pro-inflammatory cytokines in chickens

    Towards a Requirement Framework for Online Participation Platforms

    Get PDF
    Online participation platforms (OPPs) are frequently used by public institutions to involve citizens in political opinion forming and decision making. A literature re-view reveals different approaches to evaluate these OPPs. These approaches focus only on partial requirements of participation processes. In this research in progress, we develop and pretest an interdisciplinary literature-based requirement frame-work. It includes the categories usability, security, information, transparency, inte-gration, and mobilisation. Our aim is to close the research gap of a context-specific analysis and evaluation of OPPs

    Effect of peas and pea products in diets for broiler chickens with consideration of the intestinal microbiota

    Get PDF
    In addition to the whole white-flowered pea, pea protein concentrates and pea hulls can be utilized in animal nutrition. In particular, fermentable carbohydrates and fibers in peas and pea products seem to contribute to intestinal health and health maintenance in poultry, due to their prebiotic effect on the intestinal microbiota. This study was conducted to investigate the effect of different proportions of peas (P), pea protein concentrate (PPC) and pea hulls (PH) in complete feed mixtures for broilers on growth and slaughter performance as well as intestinal microbiota. Twenty diets with varying proportions of peas and pea products were fed to male broilers from d 1 to 34. Short-chain fatty acid analysis and 16S sequencing were used to examine the ileal and cecal microbiota for selected feeding groups. Overall, the attained fattening performances were at a high level. The use of peas and pea products did not affect body weight on d 34 or slaughter performance. The use of pea hulls up to 6% resulted in the highest overall feed intake and overall feed conversion ratio (P < 0.001). Microbiota composition and ileal bacterial metabolites were unchanged. Microbiota changes in the cecum were found between dietary treatments for several subdominant microbial genera that preferentially ferment carbohydrates. This study has shown that peas and pea products are well-suited as feedstuffs for feeding broilers when used appropriately. Furthermore, the intestinal microbiota responded with an increased abundance of nonpathogenic genera that may help maintain intestinal microbial homeostasis

    Feather-pecking response of laying hens to feather and cellulose-based rations fed during rearing

    Get PDF
    Recent studies in laying hens have shown that feather peckers eat more feathers than nonpeckers. We hypothesized that food pellets containing feathers would decrease the birds' appetite for feathers and thereby also decrease feather pecking. To separate the effect of feathers from that of insoluble fiber per se, additional control groups were fed pellets containing similar amounts of cellulose. Sixty (experiment 1) and 180 (experiment 2) 1-d-old Lohmann-Selected Leghorn birds were divided into 12 groups of 5 (experiment 1) and 15 (experiment 2) birds, respectively, and kept on slatted floors. During the rearing period, 4 groups each had ad libitum access to either a commercial pelleted diet, a pelleted diet containing 5% (experiment 1) or 10% (experiment 2) of chopped feathers, respectively, or a pelleted diet containing 5% (experiment 1) or 10% (experiment 2) of cellulose, respectively. In the consecutive laying period, all groups received a commercial pelleted diet. In experiment 1, feather pecking was recorded weekly from wk 5 to wk 16. In the laying period, observations were made in wk 18, 20, 22, 23, 24, 25, 26, 27, 28, and 30. In experiment 2, feather pecking was recorded weekly from wk 5 to 11, in wk 16 to wk 18, and in wk 20 and 21. At the end of the rearing period, plumage condition per individual hen was scored. Scores from 1 (denuded) to 4 (intact) were given for each of 6 body parts. The addition of 10% of feathers to the diet reduced the number of severe feather-pecking bouts (P < 0.0129) and improved plumage condition of the back area (P < 0.001) significantly compared with control diets. The relationship between feather pecking/eating and the gastrointestinal consequences thereof, which alter feather pecking-behavior, are unclear. Understanding this relationship might be crucial for understanding the causation of feather pecking in laying hen

    Lythrum salicaria Ellagitannins Stimulate IPEC-J2 Cells Monolayer Formation and Inhibit Enteropathogenic Escherichia coli Growth and Adhesion

    Get PDF
    Lythrum salicaria herb (LSH) was applied in diarrhea therapy since ancient times. Despite empirically referenced therapeutic effects, the bioactivity mechanisms and chemical constituents responsible for pharmacological activity remain not fully resolved. Taking into consideration the historical use of LSH in treatment of diarrhea in humans and farm animals, the aim of the study was to examine in vitro the influence of LSH and its C-glycosylic ellagitannins on processes associated with maintaining intestinal epithelium integrity and enteropathogenic Escherichia coli (EPEC) growth and adhesion. LSH was not only inhibiting EPEC growth in a concentration dependent manner but also its adhesion to IPEC-J2 intestinal epithelial cell monolayers. Inhibitory activity toward EPEC growth was additionally confirmed ex vivo in distal colon samples of postweaning piglets. LSH and its dominating C-glycosylic ellagitannins, castalagin (1), vescalagin (2), and salicarinins A (3) and B (4) were stimulating IPEC-J2 monolayer formation by enhancing claudin 4 production. Parallelly tested gut microbiota metabolites of LSH ellagitannins, urolithin C (5), urolithin A (6), and its glucuronides (7) were inactive. The activities of LSH and the isolated ellagitannins support its purported antidiarrheal properties and indicate potential mechanisms responsible for its beneficial influence on the intestinal epithelium

    Tolerance and safety evaluation of N, N-dimethylglycine, a naturally occurring organic compound, as a feed additive in broiler diets

    Get PDF
    N,N-dimethylglycine (DMG) is a tertiary amino acid that naturally occurs as an intermediate metabolite in choline-to-glycine metabolism. The objective of the present trial was to evaluate tolerance, safety and bioaccumulation of dietary DMG in broilers when supplemented at 1 g and 10 g Na-DMG/kg. A feeding trial was conducted using 480 1-d-old broiler chicks that were randomly allocated to twenty-four pens and fed one of three test diets added with 0, 1 or 10 g Na-DMG/kg during a 39 d growth period. Production performance was recorded to assess tolerance and efficacy of the supplement. At the end of the trial, toxicity was evaluated by means of haematology, plasma biochemistry and histopathology of liver, kidney and heart (n 12), whereas bioaccumulation was assessed on breast meat, liver, blood, kidney and adipose tissue (n 8). Carcass traits were similar between the control and 1 g Na-DMG/kg feed groups (P.0·05), but the feed:gain ratio was significantly improved at 1 g Na-DMG/kg feed compared with the control or the 10-fold dose (P¼0·008). Histological examinations showed no pathological effects and results of haematology and plasma biochemistry revealed similar values between the test groups (P.0·05). Bioaccumulation occurred at the 10-fold dose, but the resulting DMG content in breast meat was comparable with, for instance, wheat bran and much lower than uncooked spinach. In conclusion, DMG at 1 g Na-DMG/kg improved the feed:gain ratio in broilers without DMG being accumulated in consumer parts. Furthermore, dietary supplementation with DMG up to 10 g Na-DMG/kg did not induce toxicity or impaired performance in broilers

    Dietary methionine source alters the lipidome in the small intestinal epithelium of pigs

    Get PDF
    Methionine (Met) as an essential amino acid has key importance in a variety of metabolic pathways. This study investigated the influence of three dietary Met supplements (0.21% L-Met, 0.21% DL-Met and 0.31% DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA)) on the metabolome and inflammatory status in the small intestine of pigs. Epithelia from duodenum, proximal jejunum, middle jejunum and ileum were subjected to metabolomics analysis and qRT-PCR of caspase 1, NLR family pyrin domain containing 3 (NLRP3), interleukins IL1β, IL8, IL18, and transforming growth factor TGFβ. Principal component analysis of the intraepithelial metabolome revealed strong clustering of samples by intestinal segment but not by dietary treatment. However, pathway enrichment analysis revealed that after L-Met supplementation polyunsaturated fatty acids (PUFA) and tocopherol metabolites were lower across small intestinal segments, whereas monohydroxy fatty acids were increased in distal small intestine. Pigs supplemented with DL-HMTBA showed a pronounced shift of secondary bile acids (BA) and sphingosine metabolites from middle jejunum to ileum. In the amino acid super pathway, only histidine metabolism tended to be altered in DL-Met-supplemented pigs. Diet did not affect the expression of inflammation-related genes. These findings suggest that dietary supplementation of young pigs with different Met sources selectively alters lipid metabolism without consequences for inflammatory status

    A Helminth-Derived Chitinase Structurally Similar to Mammalian Chitinase Displays Immunomodulatory Properties in Inflammatory Lung Disease

    Get PDF
    The authors gratefully thank Marion Müller, Christiane Palissa, Yvonne Weber, Bettina Sonnenburg, and Beate Anders for the excellent technical assistance and Franziska Rohr for her help within the animal facility. We also thank Prof. Judith E. Allen for her expertise, critical advice, and intellectual discussion of the topic.Peer reviewe

    The Spore Coat Protein CotE Facilitates Host Colonization by Clostridium difficile

    Get PDF
    Clostridium difficile infection (CDI) is an important hospital-acquired infection resulting from the germination of spores in the intestine as a consequence of antibiotic-mediated dysbiosis of the gut microbiota. Key to this is CotE, a protein displayed on the spore surface and carrying 2 functional elements, an N-terminal peroxiredoxin and a C-terminal chitinase domain. Using isogenic mutants, we show in vitro and ex vivo that CotE enables binding of spores to mucus by direct interaction with mucin and contributes to its degradation. In animal models of CDI, we show that when CotE is absent, both colonization and virulence were markedly reduced. We demonstrate here that the attachment of spores to the intestine is essential in the development of CDI. Spores are usually regarded as biochemically dormant, but our findings demonstrate that rather than being simply agents of transmission and dissemination, spores directly contribute to the establishment and promotion of disease
    corecore