34 research outputs found

    Preparation and characterisation of single phase (MoVW)<sub>5</sub>O<sub>14</sub>-type catalyst material

    Get PDF
    MoVW based materials are highly effective catalysts for partial oxidation reactions such as conversion of acrolein to acrylic acid. They offer a high selectivity, high yields and a good long term stability. Preceding work has identified the catalytically active phase of the MoVW catalyst and characterised it by Raman spectroscopy. The current work has been carried out to synthesise and characterise this active (MoVW)5O14 type structure

    Effect of Gas Atmosphere on Catalytic Behaviour of Zirconia, Ceria and Ceria Zirconia Catalysts in Valeric Acid Ketonization

    Full text link
    [EN] Ketonization of valeric acid, which can be obtained by lignocellulosic biomass conversion, was carried out in a fixed bed flow reactor over ZrO2, 5-20 % CeO2/ZrO2 and CeO2 both under hydrogen and nitrogen stream at 628 K and atmospheric pressure. Regardless gas-carrier 10 wt% CeO2/ZrO2 was found to show higher catalytic activity compared to zirconia per se as well as other ceria modified zirconia while ceria per se exhibited very low catalytic activity. All catalysts provided higher acid conversion in H-2 than in N-2 whereas selectivity to 5-nonanone was insensitive to gas atmosphere. XRD, FTIR, UV-Vis DRS, XPS, HRTEM methods were applied to characterize catalysts in reduced and unreduced states simulating corresponding reaction conditions during acid ketonization. XRD did not reveal any changes in zirconia and ceria/zirconia lattice parameters as well as crystalline phase depending on gas atmosphere while insertion of ceria in zirconia caused notable increase in lattice parameter indicating some distortion of crystalline structure. According to XPS, FTIR and UV-Vis methods, the carrier gas was found to affect catalyst surface composition leading to alteration in Lewis acid sites ratio. Appearance of Zr3+ cations was observed on the ZrO2 surface after hydrogen pretreatment whereas only Zr4+ cations were determined using nitrogen as a gas-carrier. These changes of catalyst's surface cation composition affected corresponding activity in ketonization probably being crucial for reaction mechanism involving metal cations catalytic centers for acid adsorption and COO- stabilization at the initial step.Financial support from the Russian Foundation of Basic Research (RFBR Grant No 11-03-94001-CSIC) is gratefully acknowledged. This work was supported by the Federal Program "Scientific and Educational Cadres of Russia'' (Grant No 2012-1.5-12-000-1013-002). The authors also wish to thank Dr. Evgeniy Gerasimov, Dr. Igor Prosvirin, Dr. Demid Demidov from the Department of Physicochemical Methods at the Boreskov Institute of Catalysis for TEM and XPS measurements.Zaytseva, YA.; Panchenko, VN.; Simonov, MN.; Shutilov, AA.; Zenkovets, GA.; Renz, M.; Simakova, IL.... (2013). Effect of Gas Atmosphere on Catalytic Behaviour of Zirconia, Ceria and Ceria Zirconia Catalysts in Valeric Acid Ketonization. Topics in Catalysis. 56(9-10):846-855. https://doi.org/10.1007/s11244-013-0045-yS846855569-10Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493–1513Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Green Chem 12:574–577Malhotra SL, Wong RW, Breton MP (2002) Patent US 6461417Westfechtel A, Breucker C, Gutsche B, Jeromin L, Eierdanz H, Baumann H, Schmid KH, Nonnenkamp W (1993) Patent DE 4121117Seipel W, Hensen H, Boyxen N (2001) Patent DE 19958521Tomlinson AD (2001) Patent WO 2001094522Glinski M, Kijenski J, Jakubowski A (1995) Appl Catal A Gen 128:209–217Glinski M, Kijenski J (2000) React Kinet Catal Lett 69:123–128Parida K, Mishra HK (1999) J Mol Catal A Chem 139:73–80Serrano-Ruiz JC, Dumesic JA (2009) Green Chem 11:1101–1104Serrano-Ruiz JC, Dumesic JA (2009) ChemSusChem 2:581–586Leung A, Boocock DGB, Konar SK (1995) Energy Fuels 9:913–920Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2010) Ind Eng Chem Res 49:6027–6033Saito N (1996) Patent JP 08198796Yakerson VI, Rubinshtein AM, Gorskaya LA (1970) Patent GB 1208802Graille J, Pioch D (1991) Patent EP 457665Pioch D, Lescure R, Graille J (1995) Ol Corps Gras Lipides 2:386–389Mueller-Erlwein E, Rosenberger B (1990) Chem Ing Tech 62:512–513Corma A, Renz M, Schaverien C (2008) ChemSusChem 1:739–741Bayer (1911) Patent DE 256622Vavon G, Apchie A (1928) Bull Soc Chim 43:667–677Thorpe JF, Kon GAR (1941) Org Synth 1:192–194Nagashima O, Sato S, Takahashi R, Sodesawa T (2005) J Mol Catal A Chem 227:231–239Klein-Homann W (1988) Patent DE 3709765Stubenrauch J, Brisha E, Vohs JM (1996) Catal Today 28:431–441Pulido A, Oliver-Tomas B, Renz M, Boronat M, and Corma A (2013) ChemSusChem 6:141–151Hendren TS, Dooley KM (2003) Catal Today 85:333–351Novothy R, Paulsen S (1963) Patent DE 1158050Kim KS, Barteau MA (1990) J Catal 125:353–375Pestman R, Van Duijne A, Pieterse JAZ, Ponec V (1995) J Mol Catal A 103:175–180Martinez R, Huff MC, Barteau MA (2004) J Catal 222:404–409Matsuoka K, Tagawa K (1985) Patent JP 61207354Shutilov AA, Simonov MN, Zaytseva YuA, Zenkovets GA, and Simakova IL (2013) Kinet Catal 54:184–192Kuriacose JC, Swaminathan R (1969) J Catal 14:348–354Swaminathan R, Kuriacose JC (1970) J Catal 16:357–362Cressely J, Farkhani D, Deluzarche A, Kiennemann A (1984) Mater Chem Phys 11:413–431Kuriacose JC, Jewur SS (1977) J Catal 50:330–341Renz M, Corma A (2004) Eur J Org Chem 2004:2036–2039Taimoor AA, Favre-Reguillon A, Vanoye L, Pitault I (2012) Catal Sci Technol 2:359–363Kustov LM (1997) Top Catal 4:131–144Emmanuel NM (1978) Usp Khim 8:1329–1396Kaspar J, Fornasiero P (2002) In: Trovarelli A (ed) Catalysis by ceria and related materials. Imperial College Press, LondonReddy DD, Chowdhury B, Smirniotis PG (2001) Appl Catal A Gen 211:19–30Rango R, Kaspar G, Meriani S, di Monte R, Graziani M (1994) Catal Lett 24:107–112Rao G, Sahu H (2001) Proc Indian Acad Sci (Chem Sci) 113:651–658Navío JA, Hidalgo MC, Colón G, Botta SG, Litter MI (2001) Langmuir 17:202–210Timofeeva MN, Jhung SH, Hwang YK, Kim DK, Panchenko VN, Melgunov MS, Chesalov YA, Chang JS (2007) Appl Catal A Gen 317:1–10Kaneko H, Taku S, Tamaura Y (2011) Sol Energy 85:2321–2330Maia TA, Assaf JM, Assaf EM (2012) Mater Chem Phys 132:1029–1034Zhou HP, Si R, Song WG, Yan CH (2009) J Solid State Chem 182:2475–2485Si R, Zhang YW, Li SJ, Lin BX, Yan CH (2004) J Phys Chem B 108:12481–12488Hadjivanov KI, Vayssilov GN (2002) Adv Catal 47:307–511Vivier L, Duprez D (2010) ChemSusChem 3:654–678Vidruk R, Landau MV, Herskowitz M, Ezersky V, Goldbourt A (2011) J Catal 282:215–227Binet C, Daturi M, Lavalley JC (1999) Catal Today 50:207–225Conesa J (1995) Surf Sci 339:337–35

    Herstellung eines einphasigen (MoVW)5O14-Mischoxidkatalysators

    No full text
    Motivation Mixed oxide catalysts containing molybdenum, vanadium and tungsten are widely used in industry for partial oxidation reactions [1, 2, 3]. Previous work revealed (MoVW)5O14 to be the active phase of the catalyst. The partial oxidation from acrolein to acrylic acid is performed on such a system [4, 5]. This catalytic system is characterised by high long term stability, excellent turn-over rates and high selectivity. Different preparation steps are necessary to form a single phase, crystalline, ternary oxide (MoVW)5O14 as a model catalyst. In a previous paper [6] it was suggested that a precursor of this oxide is already formed in solution. Therefore this poster is dedicated to propose a structure of the dissolved species and a reaction mechanism leading to the formation of this structure in solution. Experimental For the synthesis of this oxide, solutions of ammonium heptamolybdate, ammonium metatungstate, and vanadyl oxalate were spray-dried followed by different thermal treatments. The structures of the materials formed in solution were studied using UV/Vis Raman and ESR spectroscopy. Results It is suggested from this data that a molecular structure is already formed in solution which seems to be closely related to that of the final crystalline Mo5O14-type oxide. Raman spectroscopy shows bands at 964, 943, 912, 821, 792, 709 and 682 cm-1. The bands at 943 and 792 cm-1 could be assigned to AHM. Bands at 964, 879, 821, 709, und 682 cm-1 do not belong to AHM and point to a polymeric species This result could be corroborated by UV/Vis and ESR spectroscopy. Moreover ESR shows that the state of oxidation of molybdenum and tungsten is +6. The state of oxidation of vanadium is +4. Vanadium exists as vanadyl type. The spray-dried sample shows bands at 943, 872, and 818 cm-1. A higher degree of polymerisation in the dried sample could be responsible for the shift of the band at 872 cm-1 compared to the spectrum in solution 879 cm-1. Literature [1] Hibst, H.,Unverricht, S. (BASF), DE 19815281 A 1. [2] Tanimoto, M., Himeji-shi, H., Mihara, I., Aboshi-ku, H., H., Kawajiri, T., Himeji-shi, H., (Nippon Shokubai), EP 0 711 745 B1. [3] Tenten, A., Hibst, H., Martin, F-G., Marosi, L., Kohl, V., (BASF), DE 4405514 A1. [4] Mestl, G., Linsmeier, C., Gottschall, R., Dieterle, M., Find, J., Herein, D., Jäger, J., Uchida, Y., Schlögl, R., J. Mol. Catal. A 162 (2000) 455-484. [5] Dieterle, M., Mestl, G., Jäger, J., Hibst, H., Schlögl, R., J. Mol. Catal. A 174 (2001) 169-185. [6] Knobl, S., Zenkovets, G. A., Kryukova, G. N., Ovsitser, O., Dieterle, M., Mestl, G. , Schlögl, R., J. Catal, submitted

    Oxidative dehydrogenation of 1-butene to 1,3-butadiene over a multicomponent bismuth molybdate catalyst: influence of c3–c4 hydrocarbons

    No full text
    The influence of light hydrocarbons, such as n-butane, isobutane, propylene, cis- and trans-2-butenes, and isobutene on the oxidative dehydrogenation of 1-butene to 1,3-butadiene over BiMoKNiCoFePOx/SiO2 catalyst has been studied using a gas flow reactor. The inhibition effect of the listed hydrocarbons on the target reaction increased in the order of n-butane ~ isobutane < propylene < 2-butenes < isobutene. In addition, in contrast to 1-butene, isobutene has shown significant contribution to coke formation. It was suggested, that the coke formation and therefore the rate of the catalyst regeneration exercise a significant influence on the efficiency of 1-butene transformation into 1,3-butadiene in the concurrent presence of other hydrocarbons

    Synthesis and characterization of the titanium doped nanostructural V<sub>2</sub>O<sub>5</sub>

    No full text
    Using scanning and analytical transmission electron microscopies (TEM), the morphology and structure of nanostructurally assembled V2O5 doped with Ti has been studied. It was found that the bulk structure of the oxide particles crystallized in rod-like shape is of the V2O5 type whereas Ti atoms are located mainly on the thin surface layer of the rods. Such surface coating is nonuniform and contains up to 3 at.% of titanium. Modification of the oxide sample with titanium atoms seems to stabilize the V2O5 structure against electron beam irradiation

    Oxidative dehydrogenation of 1-butene to 1,3-butadiene over a multicomponent bismuth molybdate catalyst: influence of c3–c4 hydrocarbons

    No full text
    The influence of light hydrocarbons, such as n-butane, isobutane, propylene, cis- and trans-2-butenes, and isobutene on the oxidative dehydrogenation of 1-butene to 1,3-butadiene over BiMoKNiCoFePOx/SiO2 catalyst has been studied using a gas flow reactor. The inhibition effect of the listed hydrocarbons on the target reaction increased in the order of n-butane ~ isobutane < propylene < 2-butenes < isobutene. In addition, in contrast to 1-butene, isobutene has shown significant contribution to coke formation. It was suggested, that the coke formation and therefore the rate of the catalyst regeneration exercise a significant influence on the efficiency of 1-butene transformation into 1,3-butadiene in the concurrent presence of other hydrocarbons
    corecore