237 research outputs found

    Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing.

    Get PDF
    Starting from the standard three-wave SBS coupled equations, we derive a novel expression describing Brillouin interaction between a pulsed pump wave with a finite cw component, and a Stokes continuous wave counter-propagating along a single-mode optical fiber. The derived integral equation relates the time-domain Stokes beam amplification to the Brillouin frequency distribution. The proposed model permits an accurate description of the Brillouin interaction even for arbitrarily-shaped pump pulses, and can be efficiently employed for improving the accuracy and the resolution of SBS-based distributed sensors. The validity and the limits of the proposed model are numerically analyzed and discussed

    Performance of Ground Anchors Built in a Flysch Deposit

    Get PDF
    AbstractThe ultimate pull-out tensile load of ground anchors is strongly dependent onsoil nature,grout injection and effective stress state around the bulb. In this paper, the comparison between the results of conventional pull-out testson instrumented anchors built in a flysch formation and those of small scale pull-out tests performed in the laboratory,on undisturbed soil samples recovered at the depth of the anchor bulb,allowed to closely examine the skin friction that can be mobilizedin undrained conditionsat the soil-structure interface. The experiments highlight a strong scale effect, probably depending on the real size androughness ofthe lateral surface of the bulb. In fact, theirregular bulb profiledue to flysch features strongly contributes to the pull-outstrength

    On the Effect of Soft Molecularly Imprinted Nanoparticles Receptors Combined to Nanoplasmonic Probes for Biomedical Applications

    Get PDF
    Soft, deformable, molecularly imprinted nanoparticles (nanoMIPs) were combined to nano-plasmonic sensor chips realized on poly (methyl methacrylate) (PMMA) substrates to develop highly sensitive bio/chemical sensors. NanoMIPs (d(mean) < 50 nm), which are tailor-made nanoreceptors prepared by a template assisted synthesis, were made selective to bind Bovine Serum Albumin (BSA), and were herein used to functionalize gold optical nanostructures placed on a PMMA substrate, this latter acting as a slab waveguide. We compared nanoMIP-functionalized non-optimized gold nanogratings based on periodic nano-stripes to optimized nanogratings with a deposited ultra-thin MIP layer (<100 nm). The sensors performances were tested by the detection of BSA using the same setup, in which both chips were considered as slab waveguides, with the periodic nano-stripes allocated in a longitudinal orientation with respect to the direction of the input light. Result demonstrated the nanoMIP-non optimized nanogratings showed superior performance with respect to the ultra-thin MIP-optimized nanogratings. The peculiar deformable character of the nano-MIPs enabled to significantly enhance the limit of detection (LOD) of the plasmonic bio/sensor, allowing the detection of the low femtomolar concentration of analyte (LOD similar to 3 fM), thus outpassing of four orders of magnitude the sensitivies achieved so far on optimized nano-patterned plasmonic platforms functionalized with ultra-thin MIP layers. Thus, deformable nanoMIPs onto non-optimized plasmonic probes permit to attain ultralow detections, down to the quasi-single molecule. As a general consideration, the combination of more plasmonic transducers to different kinds of MIP receptors is discussed as a mean to attain the detection range for the selected application field

    A plasmonic gold nano-surface functionalized with the estrogen receptor for fast and highly sensitive detection of nanoplastics

    Get PDF
    : Nanoplastics are a global emerging environmental problem whose effects might pose potential threats to the human's health. Despite the relevance of the issue, fast, reliable and quantitative in situ analytical approaches to determine nanoplastics are not yet available. The aim of this work was to devise an optical sensor with the goal of direct detecting and quantifying nanoplastics in seawater without sample pre-treatments. To this purpose, a nano-plasmonic biosensor was developed by exploiting an Estrogen Receptor (ER) recognition element grafted onto a polymer-based gold nanograting (GNG) plasmonic platform. The ER-GNG biosensor required just minute sample volumes (2 Î¼L), allowed rapid detection (3 min) and enabled to determine nanoplastics in simulated seawater with a linear dynamic concentrations range of 1-100 ng/mL, thus encompassing the expected environmental loads. The nanostructured grating (GNG) provided remarkable performance enhancements, extending the measurement range across five orders of magnitude, thanks to the both the SPR and the localized SPR phenomena occurring at the GNG chip. At last, the ER-GNG biosensor was tested on real seawater samples collected in the Naples area and the results (∼30 ng/mL) were verified by a conventional approach (filtration and evaporation), confirming the ER-GNG sensor offers a straightforward and highly sensitive method for the direct in-field nanoplastics monitoring

    Estradiol Detection for Aquaculture Exploiting Plasmonic Spoon-Shaped Biosensors

    Get PDF
    In this work, a surface plasmon resonance (SPR) biosensor based on a spoon-shaped waveguide combined with an estrogen receptor (ERα) was developed and characterized for the detection and the quantification of estradiol in real water samples. The fabrication process for realizing the SPR platform required a single step consisting of metal deposition on the surface of a polystyrene spoon-shaped waveguide featuring a built-in measuring cell. The biosensor was achieved by functionalizing the bowl sensitive surface with a specific estrogen receptor (ERα) that was able to bind the estradiol. In a first phase, the biosensor tests were performed in a phosphate buffer solution obtaining a limit of detection (LOD) equal to 0.1 pM. Then, in order to evaluate the biosensor’s response in different real matrices related to aquaculture, its performances were examined in seawater and freshwater. The experimental results support the possibility of using the ERα-based biosensor for the screening of estradiol in both matrices

    An Experimental Investigation on the Progressive Failure of Unsaturated Granular Slopes

    Get PDF
    Slope failure is a complex process which depends on several factors concerning nature and properties of soil, slope morphology and structure, past stress history, groundwater regime, boundary conditions, and their changes. As a consequence, the mechanism of slope failure is typically characterized by the development of a highly non-uniform strain field, which does not allow an easy prediction of the failure conditions. Usually, the process which will bring the slope to final collapse starts with local soil failure, which then leads to formation and propagation of a shear zone, and finally to general slope failure. This mechanical process is called progressive failure. However, in spite of the progresses in the knowledge of the slope behavior, a complete framework about the progressive failure is still missing; in particular, information about the response of granular unsaturated sloping soils is very poor. This paper reports the results of a couple of small-scale experiments on slopes reconstituted with unsaturated pyroclastic soils and subjected to continuous rainfall. The use of miniaturized sensors and optical fibers provided useful data to read some aspects of the mechanics of failure

    Non-Specific Responsive Nanogels and Plasmonics to Design MathMaterial Sensing Interfaces: The Case of a Solvent Sensor

    Get PDF
    : The combination of non-specific deformable nanogels and plasmonic optical probes provides an innovative solution for specific sensing using a generalistic recognition layer. Soft polyacrylamide nanogels that lack specific selectivity but are characterized by responsive behavior, i.e., shrinking and swelling dependent on the surrounding environment, were grafted to a gold plasmonic D-shaped plastic optical fiber (POF) probe. The nanogel-POF cyclically challenged with water or alcoholic solutions optically reported the reversible solvent-to-phase transitions of the nanomaterial, embodying a primary optical switch. Additionally, the non-specific nanogel-POF interface exhibited more degrees of freedom through which specific sensing was enabled. The real-time monitoring of the refractive index variations due to the time-related volume-to-phase transition effects of the nanogels enabled us to determine the environment's characteristics and broadly classify solvents. Hence the nanogel-POF interface was a descriptor of mathematical functions for substance identification and classification processes. These results epitomize the concept of responsive non-specific nanomaterials to perform a multiparametric description of the environment, offering a specific set of features for the processing stage and particularly suitable for machine and deep learning. Thus, soft MathMaterial interfaces provide the ground to devise devices suitable for the next generation of smart intelligent sensing processes

    Lamb Wave Detection for Structural Health Monitoring Using a Ï•-OTDR System

    Get PDF
    In this paper, the use of a phase-sensitive optical time-domain reflectometry (phi-OTDR) sensor for the detection of the Lamb waves excited by a piezoelectric transducer in an aluminum plate, is investigated. The system is shown to detect and resolve the Lamb wave in distinct regions of the plate, opening the possibility of realizing structural health monitoring (SHM) and damage detection using a single optical fiber attached to the structure. The system also reveals the variations in the Lamb wave resulting from a change in the load conditions of the plate. The same optical fiber used to detect the Lamb waves has also been employed to realize distributed strain measurements using a Brillouin scattering system. The method can be potentially used to replace conventional SHM sensors such as strain gauges and PZT transducers, with the advantage of offering several sensing points using a single fiber

    Brillouin Optical Time Domain Analysis Sensor for Active Vibration Control of a Cantilever Beam

    Get PDF
    The paper reports the use of a distributed optical fiber sensor based on stimulated Brillouin scattering, for structural vibration control. A cantilevered flexible aluminum beam was used as test-bed for vibration control. The proposed approach allows acquiring simultaneously the dynamic strain at several locations. The dynamic strain measured at one (or more) fiber location can be used to implement any vibration control algorithm. Experimental results are reported in which a voice coil, positioned near the fixed end of the cantilever beam, was employed as actuator for the reduction of the vibrations related to the first bending mode of the beam
    • …
    corecore