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Abstract: Starting from the standard three-wave SBS coupled equations, we 
derive a novel expression describing Brillouin interaction between a pulsed 
pump wave with a finite cw component, and a Stokes continuous wave 
counter-propagating along a single-mode optical fiber. The derived integral 
equation relates the time-domain Stokes beam amplification to the Brillouin 
frequency distribution. The proposed model permits an accurate description 
of the Brillouin interaction even for arbitrarily-shaped pump pulses, and can 
be efficiently employed for improving the accuracy and the resolution of 
SBS-based distributed sensors. The validity and the limits of the proposed 
model are numerically analyzed and discussed. 
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1. Introduction  

Stimulated Brillouin scattering (SBS) is one of the most dominant nonlinear effects in single-
mode optical fibers. It consists in the coupling between two counter-propagating optical 
waves, the pump and the Stokes wave, and an acoustic wave. Interaction reaches its maximum 
for a precise value of the frequency shift between the two optical waves, which depends on 
the temperature and strain conditions in the material.  

Distributed sensing in an optical fiber is commonly obtained by use of a cw beam and a 
counter-propagating pulsed beam. One measures the intensity of the transmitted cw beam as a 
function of the frequency shift to resolve the Brillouin gain spectrum. Positional information 
is obtained through a time-domain analysis; shorter pulses increase the spatial resolution. 
However, Brillouin profile is broadened to a Gaussian-like profile as the pulse width 
decreases below the phonon lifetime, thus reducing the accuracy of temperature/strain 
measurements [1]. On the other hand, the use of a pulsed pump beam with a small cw 
component (base) results in a spectral narrowing, arising from the background acoustic 
intensity generated by interaction between the cw beam and the baseline of the pulsed beam 

[2-3]. Experimentally, one can control the baseline level by adjusting the bias voltage of the 
electro-optic modulator used for pulse forming. Although such a spectral narrowing is 
desirable to perform accurate temperature/strain estimations, it has been also reported that 
such a base for the pulsed beam may result in distortions in Brillouin gain curves, leading to 
errors in the determination of the Brillouin frequency, especially when one is trying to 
measure local fiber conditions that are close to the average condition in the whole fiber [3-4]. 
Furthermore, the presence of subpeaks in the Brillouin spectrum originating from off-
resonance relaxation oscillations in the Brillouin time-domain [5], can lead to 
misinterpretation due to the difficulty to distinguish these subpeaks from the peaks due to 
strain–temperature variations along the fiber. 

The above considerations suggest the opportunity to develop an accurate time-domain 
model to be employed in a reconstruction algorithm, which would allow corrections of the 
recorded spectra and thus a more-precise estimation of the fiber condition [3, 6]. Such an 
algorithm would require the generation of synthetic Brillouin signals corresponding to a 
particular fiber condition. Although this is feasible in principle by numerically integrating the 
three coupled-wave equations governing SBS interaction, this approach would lead to 
unacceptable computation times.  

In this letter, we show that, under some hypotheses that are valid in many practical cases, 
an integral expression relating the Brillouin signal to the gain distribution along the fiber can 
be formulated. Such expression can be numerically evaluated in an efficient way, opening the 
possibility to implement iterative reconstruction algorithms. The derived expression is also of 
interest, because it allows us to gain a better physical insight into the phenomena involved in 
high-resolution Brillouin measurements. On the other hand, the proposed model can be 
employed not only to describe the SBS interaction in standard Brillouin optical time-domain 
analysis (BOTDA) configurations, but, more generally, it can be applied to analyze the SBS 
interaction between a launched cw beam and a counter-propagating pump beam with an 
arbitrary waveform. Hence, the model is also of interest for studying recently proposed 
measurement schemes, involving e.g. the use of a double-pulse [7], a pulse pre-pump [8], or a 
dark pulse [9].  
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2. Theoretical description 

The method followed to derive our model is based on approaching the SBS equations in the 
frequency domain. Such an approach has the advantage that it leads to a more easy-to-handle 
solution with respect to methods directly working in the time domain. We start from the 
following three-wave SBS transient model [10], where the linear optical attenuation of the 
fiber has been neglected: 
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where Ep, Es, and Q are the amplitudes of the pulsed pump, the cw Stokes, and the 
acoustic fields, respectively; gB is the SBS gain coefficient; c is the light velocity in the 
vacuum, n is the linear refractive index of the fiber; Δ+Γ=Γ j1 , where ( )τ211 =Γ  (τ = 10 ns 

is the phonon lifetime for silica fibers) is the damping rate and ( ) ( )zz Bpp ωω −=Δ  is the z-

dependent detuning frequency, i.e. the difference between the pump-probe frequency shift and 
the local Brillouin frequency.  

The boundary conditions for Eqs. (1) are ES(L,t) = EsL, and EP(0,t) = EP0(t), where EP0(t) 
represents the pump waveform at the input section. When considering a pulsed pump beam, a 
continuous spectrum for the pump, Stokes and acoustic fields must be considered.  

The slowing-varying amplitudes can be written as: 
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In Eqs. (2-4), the symbols ω′ , ω ′′  and Ω  represent the angular frequency of the pump 
field amplitude, the angular frequency of the Stokes field amplitude, and the angular 
frequency of the acoustic field amplitude, respectively. By substituting Eqs. (2-4) in Eq. (1c), 
and solving for the generated acoustic wave, the following equation for the Stokes wave 
amplitude can be derived in the frequency domain: 
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Details on the analytical derivation of Eq. (5) can be found in Appendix. The physical 
meaning of Eq. (5) is the following: The integral in the square brackets represents the acoustic 
wave component at frequency ω’’-ω, which interacts with the pump spectral component at 
frequency ω’’, giving rise to a Stokes signal at frequency ω. Integration of Eq. (5) is difficult 
due to the inter-coupling between the different components of the Stokes spectrum. The 
problem can be greatly simplified if we consider that the Stokes intensity is cw at the input 
section (z = L), while it acquires more spectral components during the propagation along the 
fiber due to SBS. For pump pulse widths comparable to or shorter than the phonon lifetime, 
the Stokes modulated signal is typically two or three orders of magnitude below the cw 
component. Hence, we can safely assume that only the cw component of the Stokes beam 
contributes significantly to acoustic wave generation by interaction with the pump spectrum, 
i.e., the spectrum of the acoustic wave is similar to that of the pump field. From a 
mathematical point of view, this is equivalent to assume a Dirac Delta function for the Stokes 
field in the square brackets of Eq. (5). Hence, the convolution integral over ω’ is reduced to 
the only term for which ω’=ω’’-ω. Equation (5) is then simplified as:  
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where ( )zE CW
s  represents the stationary Stokes field along the fiber. The above equation 

indicates that each component of the acoustic wave spectrum at frequency ω’’-ω interacts 
with the pump spectral component at frequency ω’’, contributing to the overall Stokes spectral 
component at frequency ω. Equation (6) can be integrated along z, provided that the pump 
spectrum is known for each section along the fiber. For not excessively long fibers, we can 
apply the undepleted pump approximation. Under this hypothesis, together with the boundary 
condition ( ) 0, =ωLsE , we get the final solution to the Stokes amplitude at  z = 0: 
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Note that for a Hermitian pump spectrum, the above integral can be written as a 

convolution integral:   
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In Eqs. (7-9), Ep(0,ω) is the pump spectrum at the launch (z = 0) section and Es(0,ω) is 
the spectrum of the transmitted (z = 0) Stokes signal. The convolution in Eq. (9) means that 
any pair of pump spectrum frequencies differing by ω contributes to the frequency ω of the 
transmitted Stokes spectrum. The latter can be inverse-Fourier-transformed, in order to 
achieve the time-domain Stokes field at z = 0. Finally, the transmitted Stokes power can be 

calculated as ( ) ( ) effss AtEtP
2

,0,0 = , where Aeff is the effective area of the fiber. Note that 

the integral in Eq. (8) can be safely restricted to the range of frequencies over which Ep(ω) is 
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significantly higher than zero. Instead, the Brillouin gain G(z,ω) (and consequently the Stokes 
spectrum) may extend to higher frequencies: Actually, the ω’-component of the pump 
spectrum may give a contribution to higher frequencies (ω>ω’) of the Stokes spectrum. We 
underline that, although the model has been developed by supposing amplification of the cw 
beam at the expense of the pulsed beam, the model can be equally applied in the case of a 
pulsed Stokes beam, where loss is induced on a cw pump beam. In such a case, it is sufficient 
to invert the roles of the pump and Stokes beams, while a negative SBS gain coefficient gB 
should be considered. Furthermore, Eqs. (7-9) can be evaluated not only for a pump beam 
consisting of a single pulse (with or without a baseline), but in general for an arbitrary pump 
spectrum. Hence, the model can be applied in order to analyze the characteristics of the SBS 
spectrum when using any specific pump waveform, or, conversely, to determine the optimal 
pulse waveform to be employed in order to achieve a desired SBS spectrum.  

3. Numerical results 

The validity of the model described by Eq. (7) has been tested by comparing, for a number of 
test-cases, the Stokes signal calculated by the proposed model, with the fields calculated by 
directly solving Eq.s (1). The latter were solved by the LeVeque wave propagation method 

[11], based on the time updating of the initial solution resulting from the SBS stationary 
equations. Unless otherwise specified, numerical tests were performed for an input pump 
power of 10 mW, an input Stokes power of 1 mW, and a Brillouin gain gB/Aeff = 0.2.  

The first numerical test was performed on a uniform 10-m-long fiber. The time instant 
when the pulse enters the fiber was set to 8 ns, whereas the pulse width and rise/fall times 
were set to 10 ns and 0.1 ns, respectively. The Stokes spectrum was calculated for a frequency 
interval ranging from 0 to 1 GHz, with a step of 3 MHz. The quantity plotted in Fig. 1 refers 
to the difference between the output Stokes power at z = 0 and the input Stokes power at z = 
L, calculated for different detuning frequencies and extinction ratios (ER). The latter is 
defined as the ratio between the maximum pump power and the minimum (cw) pump power. 
Comparison of the time-domain waveforms demonstrates the accuracy of the proposed 
method. The normalized norm difference between the signals never exceeded 6 ‰. Note that 
the computation time needed to solve Eqs. (1) and Eq. (7) is very different: For this example, 
the time required to solve Eqs. (1) for a single detuning frequency and extinction ratio was 
about 30 minutes on a Pentium 4 processor with a 3.60-GHz clock frequency, running under 
MATLAB environment, whereas solving Eq. (7) on the same platform took about 12 seconds 
(including the time required to calculate the stationary solution). 

The next test was performed for the same pulse condition, but on a fiber length of 50 m, 
with a 1-meter-long 30 MHz-large perturbation in the middle of the fiber. Stokes spectrum 
was calculated up to 1 GHz with a frequency step of 600 kHz, while the extinction ratio was 
set to 20 dB. Figure 2 clearly indicates that our model is successful in determining the 
Brillouin time-domain signals. In particular, the inset shows the accuracy of the model in 
describing the prolonged Brillouin gain at Δ = 30 MHz, due to the fact that, even after the 
pulse passes the perturbation, the phonon (acoustic) field at Δ = 30 MHz is still sustained by 
the interaction of the pulse cw level and Stokes signals [4]. On the other hand, for this longer 
fiber, we also note that pump depletion induces an error in our model increasing with distance, 
especially for zero detuning, reaching a maximum deviation of about 7 ‰ at the pulse exit 
location. Maximum norm deviation from the solution of Eqs. (1) is about 3 % in this case. 
Therefore, for fiber lengths of tens of meters or more, the approximation of undepleted pump 
used in our model may give rise to an error increasing with the distance from the pulse launch 
section. Obviously, for a fixed fiber length, such an error will decrease for weaker input 
Stokes powers. We also underline that a given error in Stokes signal modeling does not imply 
necessarily an equivalent error in Brillouin frequency determination when employing iterative 
reconstruction algorithms. For instance, we experimentally showed in Ref. [12] that the error 
in Brillouin frequency determination due to pump depletion becomes significant for fiber 
lengths of several km.  
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Fig. 1. Stokes amplification time-domain waveforms, as calculated by solving the full model of 
Eqs. (1) (dashed blue lines) and the model of Eq. (7) (solid red lines). Solutions are calculated 
for L = 10 m, τP = 10 ns, and ER = 10 dB (A) ER = 20 dB (B). 
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Fig. 2. Stokes amplification time-domain waveforms, as calculated by solving the full model of 
Eq.s (1) (dashed blue lines) and the model of Eq. (7) (solid red lines). The inset shows a zoom-
in view of the perturbed region, at Δ = 30 MHz. Solutions are calculated for L = 50 m, τP = 10 
ns, and ER = 20 dB.  

 
A successive test was performed on a shorter uniform fiber (L = 1 m) and for a shorter 

pulse width (τP = 1.5 ns). This fiber length was chosen in order to put in evidence the transient 
effects related to the acoustic wave off-resonance relaxation. Time-domain waveforms were 
calculated for a detuning frequency ranging from -500 to 500 MHz, with a 10 MHz step. 
Stokes spectrum was calculated up to 10 GHz, with a frequency step of 10 MHz. Figure 3 
shows the Brillouin gain spectrum calculated by using the two methods, at the instant t = 18 
ns, i.e. at the instant in which the pulse exits the fiber. Still, we can observe a close agreement 
between the two calculations (norm difference over the whole frequency range ≈ 1 %). Note 
the presence of subpeaks in the Brillouin spectrum, originating from off-resonance relaxation 
oscillations in Brillouin time-domain signals [5].  
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Fig. 3. Brillouin gain spectrum calculated at t = 18 ns, for a uniform 1-meter-long fiber, τP = 
1.5 ns, ER = 20 dB, by solving the full model of Eqs. (1) (dashed blue line) and the model of 
Eq. (7) (solid red line). 

 
As a further demonstration of the capability of our method, we performed another test on 

a 1-meter-long fiber, and for a 1.5-ns-long pulse. However, in this case the fiber was subjected 
to two 15cm-long, 30 MHz-large perturbations, separated by an unperturbed 15-cm-long 
central region. The simulation parameters were identical to the ones employed for the latter 
test. Figure 4 shows the Brillouin gain spectra calculated according to the two methods, in 
correspondence of three fiber positions, chosen within the first perturbation, the central 
unperturbed region, and the second perturbation, respectively. It can be seen that the 
agreement is very good, as both methods display the superposition of two Brillouin gain peaks 
at each considered section. 
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Fig. 4. Brillouin gain spectrum calculated at t = 12.1 ns (blue line), t = 13.6 ns (red line) and t = 
15 ns (green line), for a perturbed 1-meter-long fiber, τP = 1.5 ns, ER = 20 dB, by solving the 
full model of Eqs. (1) (dashed lines) and the model of Eq. (7) (solid lines). 

 
Finally, the following analysis was devoted to understand the limits of validity of the 

proposed model. As discussed earlier, the undepleted pump approximation introduces an error 
which can be considered negligible for relatively short fibers (let us say L ≤ 10 m), whereas 
for longer fibers this error may become significant. In the latter case, a better estimation of 
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Brillouin signals may be achieved by taking into account the interaction of the pump pulse 
peak with the cw (dominant) component of the Stokes wave and using the computed pump 
power distribution into the calculation of Eq. (6). Obviously, the model complexity will 
increase as well. To demonstrate this possibility, we calculated again the Stokes signal for the 
50-meter-long fiber case previously shown in Fig. 2, but considering pump depletion. Results 
are shown in Fig. 5, where a better agreement between the approximated and exact 
computations can be noted. In particular, the norm error in this case is about 4 ‰, whereas 
maximum deviation is about 4⋅10-4.  
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Fig. 5. Stokes amplification time-domain waveforms, as calculated by solving the full model of 
Eq.s (1) (dashed blue lines) and the model of Eq. (6), in which pump depletion is taken into 
account (solid red lines). Solutions are calculated for L = 50 m, τP = 10 ns, and ER = 20 dB. 

 
On the other hand, we must also consider the error introduced in our model for neglecting 

the modulated Stokes signal in the calculation of the generated acoustic wave. We can argue 
that the above assumption is valid as long as the modulated Stokes signal is significantly 
smaller than the cw counterpart. Under undepleted pump approximation, the maximum 
modulated Stokes signal can be estimated as: [ ]1)exp( −⋅⋅ WPAgP peffBsL , where W is the 

pump-Stokes interaction length ( ncW pτ21= ) and PSL is the input (at z = L) cw Stokes 

power. Here, we are mainly interested in pulse widths comparable or shorter than the phonon 
lifetime. Actually, for longer pulse widths, a quasi-stationary model, much simpler than the 
one expressed by Eq. (7), can be safely employed [13]. By setting a pulse width of 10 ns and 
an input Stokes power of 1 mW, and imposing a modulated Stokes signal ten times smaller 
than the input cw component (i.e., 100 μW), we estimate a maximum input pump power of ∼ 
0.5 W. This means that, for the conditions considered in our example and input pump powers 
sufficiently smaller than 0.5 W, we may expect that our model will be able to accurately 
determine the Brillouin signals. To confirm this prevision, we performed a number of 
simulations for a uniform 10-meters-long fiber, an input Stokes power of 1 mW, and for 
increasing input pump powers in the range 10 mW - 1 W. Results of this simulation are 
summarized in Table 1, where we report the normalized norm difference between the two 
models. Note that the error increases faster when input pump power exceeds 0.5 W. As 
mentioned earlier, this has to be attributed to the high modulated Stokes signal occurring for 
these pump levels. Actually, maximum Stokes amplification as calculated by our model for an 
input pump power of 1 W (not shown here), is about 2.6 % smaller than the one calculated 
with the full model. This depends on the fact that, neglecting the modulated Stokes signal 
contribution to the generated acoustic wave, results in an underestimation of the acoustic 
wave intensity, and consequently of the modulated Stokes signal itself. On the other hand, we 
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must also underline that such high pump powers are unusual in Brillouin-based 
measurements, in order to avoid the onset of other nonlinear effects (Raman scattering, self-
phase modulation, etc.). 

Table 1. Normalized norm difference between the Brillouin signals calculated by solving Eq. (7) and the Brillouin 
signals calculated by solving Eqs. (1). Solutions are calculated for L = 10 m, τP = 10 ns, ER = 20 dB, and input Stokes 

power = 1 mW.  

Total input pump power 10 mW 100 mW 500 mW 1 W 

Norm Difference 5.7 ‰ 8.4 ‰ 9.6 ‰ 2.8 % 

 

4. Conclusions 

In summary, an analytical expression relating the time-domain Stokes amplification to the 
Brillouin frequency shift distribution along a single-mode optical fiber has been derived. To 
the best of our knowledge, this is the first time an analytical expression is derived for the case 
of a pulsed pump beam, in which the transient effects due to the acoustic wave are (at least 
partially) taken into account. We underline that the expression given in Ref. [14] for a 
modulated pump wave is only valid for very long (L > 1 km) fibers.  

The derived expression may be employed for fast generation of synthetic Brillouin signals 
in BOTDA configurations, for each assigned Brillouin frequency shift profile. More 
generally, the model can be employed to describe SBS interaction between a CW beam and a 
counter-propagating, arbitrarily-shaped, pulse beam. The accuracy of the proposed model has 
been evaluated for several numerical test-cases. The results show that the model is accurate 
enough to be employed in iterative reconstruction algorithms for precise temperature/strain 
sensing, similarly to previous works published by the Authors [6, 12].  

Appendix 

We report in this section the analytical derivation of Eq. (5), starting from the SBS coupled-
wave equations and the assumptions of Eqs. (2-4). 

Substitution of Eqs. (2-4) in Eq. (1c), leads to the following equation: 
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By imposing the phase matching conditions, i.e. ( )ωω ′′−′=Ω  and 

( ) cnva ωω ′′+′=Ω , Eq. (10) can be rewritten as: 
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From Eq. (11) we derive: 
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which can be substituted in Eq. (4), so as to achieve the solution for the acoustic wave: 
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By using Eq. (13) and Eqs. (2-3) we can write:  
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as well as: 
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By equating Eq. (14) and Eq. (15) we achieve: 
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By imposing ( )'''''' ωωωω −−−= , Eq. (16) can be rewritten as: 
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From Eq. (17) we achieve: 
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which, upon a proper change of variables, coincides with the expression of Eq. (5).  
As a final remark, if the optical attenuation is not negligible, it is easy to show that Eq. (5) 

can be generalized as follow: 

( ) ( ) ( )
( )( )

( )ωα

ωω
ωω

ωωω
ω

ω

,
2

2exp
,,

2
),(

'' 1

1

z

dz
c

n
j

zj

zEzzg
z

z

CW
sB

s

*
pp

s

E

EE
E

+

′′⎟
⎠

⎞
⎜
⎝

⎛−
−′′+Δ−Γ

−′′′′Γ
−=

∂
∂

∫
 (19) 

where α is the linear optical attenuation along the fiber. Consequently, by following the 
same procedure described previously, Eq. (7) can be rewritten as: 
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