42 research outputs found

    Following Cell-fate in E. coli After Infection by Phage Lambda

    Get PDF
    The system comprising bacteriophage (phage) lambda and the bacterium E. coli has long served as a paradigm for cell-fate determination1,2. Following the simultaneous infection of the cell by a number of phages, one of two pathways is chosen: lytic (virulent) or lysogenic (dormant)3,4. We recently developed a method for fluorescently labeling individual phages, and were able to examine the post-infection decision in real-time under the microscope, at the level of individual phages and cells5. Here, we describe the full procedure for performing the infection experiments described in our earlier work5. This includes the creation of fluorescent phages, infection of the cells, imaging under the microscope and data analysis. The fluorescent phage is a "hybrid", co-expressing wild- type and YFP-fusion versions of the capsid gpD protein. A crude phage lysate is first obtained by inducing a lysogen of the gpD-EYFP (Enhanced Yellow Fluorescent Protein) phage, harboring a plasmid expressing wild type gpD. A series of purification steps are then performed, followed by DAPI-labeling and imaging under the microscope. This is done in order to verify the uniformity, DNA packaging efficiency, fluorescence signal and structural stability of the phage stock. The initial adsorption of phages to bacteria is performed on ice, then followed by a short incubation at 35°C to trigger viral DNA injection6. The phage/bacteria mixture is then moved to the surface of a thin nutrient agar slab, covered with a coverslip and imaged under an epifluorescence microscope. The post-infection process is followed for 4 hr, at 10 min interval. Multiple stage positions are tracked such that ~100 cell infections can be traced in a single experiment. At each position and time point, images are acquired in the phase-contrast and red and green fluorescent channels. The phase-contrast image is used later for automated cell recognition while the fluorescent channels are used to characterize the infection outcome: production of new fluorescent phages (green) followed by cell lysis, or expression of lysogeny factors (red) followed by resumed cell growth and division. The acquired time-lapse movies are processed using a combination of manual and automated methods. Data analysis results in the identification of infection parameters for each infection event (e.g. number and positions of infecting phages) as well as infection outcome (lysis/lysogeny). Additional parameters can be extracted if desired

    Cell fate decisions emerge as phages cooperate or compete inside their host

    Get PDF
    The system of the bacterium Escherichia coli and its virus, bacteriophage lambda, is paradigmatic for gene regulation in cell-fate development, yet insight about its mechanisms and complexities are limited due to insufficient resolution of study. Here we develop a 4-colour fluorescence reporter system at the single-virus level, combined with computational models to unravel both the interactions between phages and how individual phages determine cellular fates. We find that phages cooperate during lysogenization, compete among each other during lysis, and that confusion between the two pathways occasionally occurs. Additionally, we observe that phage DNAs have fluctuating cellular arrival times and vie for resources to replicate, enabling the interplay during different developmental paths, where each phage genome may make an individual decision. These varied strategies could separate the selection for replication-optimizing beneficial mutations during lysis from sequence diversification during lysogeny, allowing rapid adaptation of phage populations for various environments

    The Global Reciprocal Reprogramming between Mycobacteriophage SWU1 and Mycobacterium Reveals the Molecular Strategy of Subversion and Promotion of Phage Infection

    Get PDF
    Bacteriophages are the viruses of bacteria, which have contributed extensively to our understanding of life and modern biology. The phage-mediated bacterial growth inhibition represents immense untapped source for novel antimicrobials. Insights into the interaction between mycobacteriophage and Mycobacterium host will inform better utilizing of mycobacteriophage. In this study, RNA sequencing technology (RNA-seq) was used to explore the global response of Mycobacterium smegmatis mc2 155 at an early phase of infection with mycobacteriophage SWU1, key host metabolic processes of M. smegmatis mc2 155 shut off by SWU1, and the responsible phage proteins. The results of RNA-seq were confirmed by Real-time PCR and functional assay. 1174 genes of M. smegmatis mc2 155 (16.9% of the entire encoding capacity) were differentially regulated by phage infection. These genes belong to six functional categories: (i) signal transduction, (ii) cell energetics, (iii) cell wall biosynthesis, (iv) DNA, RNA, and protein biosynthesis, (v) iron uptake, (vi) central metabolism. The transcription patterns of phage SWU1 were also characterized. This study provided the first global glimpse of the reciprocal reprogramming between the mycobacteriophage and Mycobacterium host

    Convergent, Parallel and Correlated Evolution of Trophic Morphologies in the Subfamily Schizothoracinae from the Qinghai-Tibetan Plateau

    Get PDF
    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP

    Wall-induced forces on a rigid sphere at finite Reynolds number

    Get PDF
    published or submitted for publicationis peer reviewe

    Interaction Between a Spherical Particle and Wall -Bounded Flows at Finite Reynolds Number

    No full text
    196 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2007.Thirdly, we investigate the interaction of a finite-sized particle embedded in a turbulent channel flow. Particles of various sizes have been located at two specific wall-normal locations, the buffer region and the channel center. Near-wall region mechanisms are observed consisting of such different events as bursting, sweep, and ejection, whereas channel center can be considered as nearly isotropic turbulence. We compare the computed forces with the standard force formulations and analyze possible mechanisms for their deviations. Further, we analyze the back effects that the particle imposes on the turbulence field---in particular, the wake responses to the ambient turbulence and the turbulence modulation by the particle for the energy and wall shear stress.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD

    Structural modification of carbon black for improving the dielectric performance of epoxy based composites

    No full text
    To explore a feasible strategy for improving the dielectric properties of carbon black (CB)/epoxy composites, CB@TiO2 core-shell particles and CB-SiO2 hybrid particles were prepared and incorporated into epoxy. The microstructures of CB, CB@TiO2, and CB-SiO2 particles, as well as the dielectric properties of their epoxy-based composites were investigated. The results showed that the composites containing CB-SiO2 hybrid particles possessed a higher dielectric constant than the ones containing pristine CB. The dielectric constant of the composite with 20.0 vol% CB-SiO2 reached 52.68 (1 kHz), which was ca. 4 times greater than that of the one containing 20.0 vol% pristine CB. Meanwhile, the composites containing CB@TiO2 core-shell particles exhibited suppressed values of dielectric loss. The permittivity of the composite with 20.0 vol% CB@TiO2 reached 19.52 (1 kHz), while its dielectric loss remained low (0.047 at 1 kHz). These results indicated that the dielectric properties of epoxy composites could be enhanced with the introduction of modified fillers. Keywords: Carbon black, Epoxy, Composite, Dielectric performanc
    corecore