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Abstract

We perform direct numerical simulations of a rigid sphere translating parallel to a flat wall in an otherwise
quiescent ambient fluid. A spectral element method is employed to perform the simulations highly accurately.
Simulation results are compared with the low Reynolds number theory of Vasseur & Cox (1977), with
the recent experiments of Takemura & Magnaudet (2003) and with the simulations of Kim et al. (1993).
The most surprising result from the present simulations is that the wall-induced lift coeflicient increases
dramatically with increasing Re above about 100. Detailed analysis of the flow field around the sphere
suggests that this increase is due to an imperfect bifurcation resulting in the formation of a double threaded
wake vortical structure. In addition to a non-rotating sphere, we also simulate the case of a freely rotating
sphere in order to assess the importance of free rotation on the translational motion of the sphere. We
observe the effect of sphere rotation on lift and drag forces to be small. Finally we explore the effect of the
wall on the onset of unsteadiness.

1 Introduction

Particles are often subjected to a hydrodynamic lift force and as a result they acquire a component of velocity
transverse to the flow streamlines. The transverse motion, although much weaker than the streamwise particle
motion, plays an important role in processes such as deposition and resuspension.

There are several sources of hydrodynamic lift force. A particle in shear flow experiences shear-induced
lift force (Saffman 1965). From the properties of creeping flow it is well known that there is no lift force in
a shear flow in the zero Reynolds number limit. The shear-induced lift force is clearly an inertial effect.

A spinning particle experiences a Magnus lift force when subjected to a uniform cross-flow (Rubinov &
Keller 1961). This rotation-induced lift force can also be explained as an inertial effect arising from the
differential pressure associated with the high-speed and low-speed sides of the sphere.

A particle moving parallel to a flat wall experiences a wall normal lift force at non-zero finite Reynolds
numbers. The wall-induced lift force is due to two different competing mechanisms (Takemura & Magnaudet
2003). First, the vorticity generated at the surface of the particle, advects and diffuses downstream. The
presence of a nearby wall breaks the axisymmetry of the wake vorticity distribution. The resulting induced
velocity also breaks the symmetry and results in an effective lift force that tends to move the particle away
from the wall. Second, based on inviscid theory it can be argued that the flow relative to the particle will
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accelerate faster in the gap between the particle and the wall. The resulting low pressure in the gap will
induce a lift force directed towards the wall. Analytical expressions for the combined wall-induced lift force
at low, but finite, Reynolds numbers have been obtained by Cox & Hsu (1977) and Vasseur & Cox (1977)
for a rigid spherical particle with a no-slip surface and by Takemura et al. (2002) for a clean bubble with a
stress-free surface.

The present work will focus attention on wall-induced lift force in the finite Reynolds number regime.
For the general case of a particle in arbitrary translational and rotational motion through a boundary layer
adjacent to a wall, all three lift mechanisms are simultaneously operative. Here we isolate the wall-induced
lift mechanism by considering the steady translational motion of a rigid sphere parallel to a wall in an
otherwise stagnant fluid. A physical scenario for such steady parallel motion is when a spherical particle
gravitationally settles parallel to a flat plate, which is slightly tilted away from the vertical. In this case,
the hydrodynamic drag and lift forces on the sphere are in perfect balance with the components of the
gravitational force. When particle motion is either unsteady or not parallel to the wall, the present results
approximately apply only for the quasi-steady component of the force, which depends on the instantaneous
position and velocity of the particle. In many situations, this quasi-steady component may itself provide an
adequate measure of the actual force. In cases where the quasi-steady component is not adequate, one must
face the difficult task of characterizing the effect of unsteady and non-parallel motion.

Results from direct numerical simulations of a spherical particle in translational motion parallel to a rigid
flat wall will be discussed. The simulations are performed using a high-order spectral element methodology.
The recent experiments of Takemura & Magnaudet (2003) are of great relevance to the present work, since
they provide the first (and to our knowledge the only) clean measurement of wall-induced lift force over a
wide range of Re. For Reynolds numbers of order unity the experimental results are in excellent agreement
with the low Reynolds number theory. With increasing Reynolds number up to about 100 they observe the
lift coefficient to steadily decrease, but due to finite Reynolds number effect, the decrease is milder than
that predicted by low Reynolds number theory. The present computational results, for Re < 100, are in
good agreement with the experimental results of Takemura & Magnaudet (2003). With further increase in
Reynolds number the computations show an interesting trend of turn around and the lift coefficient begins
to increase with Re. The increase is substantial enough to have a strong influence on the wall normal motion
of particles.

The wall-induced asymmetry of the flow, which is responsible for the lift force, will also induce a rotational
motion as the particle translates parallel to the wall. In an unbounded linear shear flow, in the limit of low
Reynolds number, Saffman (1965) has shown that the rotation-induced lift force is less important than the
shear-induced lift force. At finite Re, recent numerical simulations (Bagchi & Balachandar 2002) have shown
that the effect of free rotation on the translational motion of a particle is quite small. Furthermore, they
have shown that the small added lift force due to rotation can be expressed as a scaled Magnus lift force.
Here we similarly examine the importance of particle rotation in the presence of wall effect. In addition to
a non-rotating sphere we also consider a sphere that is free to rotate in response to the net hydrodynamic
torque acting on it, in order to address the combined effect of rotation and wall-induced lift force.

In the unbounded case, the wake behind the sphere remains axisymmetric up to a Reynolds number of
about 212. Above which the wake becomes non-axisymmetric, but there still exists a plane of symmetry,
whose orientation is arbitrary. The wake becomes unsteady and begins to shed vortices only above a Reynolds
number of about 270 (Natarajan & Acrivos 1993, Johnson & Patel 1999, Bagchi et al. 2001). With the
presence of a nearby wall, the axisymmetry of the wake is geometrically broken at all Reynolds numbers.
However, at low Reynolds numbers there exists a plane of symmetry, which is normal to the wall, oriented
along the streamwise direction and passes through the center of the particle. The present study will also
include simulations of flow over a particle near a plane wall in the unsteady regime to examine the effect of
the wall on the onset of unsteadiness.



2 Methodology

We consider a rigid sphere moving at a constant velocity —U parallel to a flat wall in an otherwise quiescent
ambient fluid, as shown in figure 1. We consider a reference frame, which is attached to the particle. In this
moving frame, the flat wall and the far field translates at a uniform velocity of U. We choose the diameter
of the sphere, d, as the length scale and U as the velocity scale.

Z

Figure 1: Schematic of a sphere moving through a stationary ambient fluid parallel to a a flat wall. The
coordinate system to be employed is shown.

2.1 Governing equations

The governing equations in non-dimensional terms are:

V-u=0, (1)
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The appropriate boundary conditions in the translating reference frame attached to the center of the

sphere are:

u=rxQ for |r|=1/2, 3)



u=ex for z=-L, 4)

u=-ex for |r|]— o0, (5)

where r is the position vector from the center of the sphere and €2 is the nondimensional angular velocity of
the sphere. If the sphere is not allowed to rotate then 2 = 0. The two nondimensional parameters of the
problem are Reynolds number, Re = dU/v, and scaled distance from the wall, L, where v is the kinematic
viscosity of the fluid. In the present work, Re ranges from 0.5 to 300, and the values of L considered are
0.75, 1, 2 and 4.

The drag, lift and moment coefficients are defined as follows:

_ B 81 : :
Cp = Co0ni?) 7 [/S( pn +n T)ds] ex, (6)
_ F, 8
CL_i(%pU%rR?) = [/S( pn + n T)ds] €z, (7
M-ey 16
CM:WZF[/SI‘XTdS}'ey’ (8)

where S denotes the surface of the sphere, n is the outward unit normal to the surface of the sphere, and
7 is the dimensionless viscous stress tensor. In the above equations FD, Fr and M are the dimensional
streamwise force, wall-normal force and hydrodynamic moment on the particle. At the Reynolds numbers
under consideration symmetry about the y = 0 plane is preserved by the flow. As a result, there is no net
force on the sphere along the y direction. Furthermore, only the y-component of the moment is non-zero
and is defined to be positive in the counter-clockwise direction.

3 Numerical approach & validation

The present direct numerical simulations are performed using NEK5000, which employs a Py — Py —_2 spectral
element method, which is a higher-order weighted residual technique that employs compatible trial and test
spaces for velocity and pressure (Fischer 1997). The computational domain is partitioned into hexahedral
elements, which are deformed by isoparametric mappings. Within each element, velocity and pressure are
represented in local Cartesian coordinates by tensor-product Lagrange polynomials of degree N and N — 2,
respectively. Time stepping is based on semi-implicit splitting scheme that, with correct treatment of the
incompressibility constraint, allows high-order temporal accuracy. Significant reduction in computational
complexity is achieved by dividing the time advancement into independent convective, viscous, and pres-
sure subproblems. The latter two subproblems are elliptic in nature, which are solved efficiently using the
overlapping Schwarz method (Fischer 1997).

The computational domain is chosen to be a large rectangular box surrounding the sphere. Along the
wall-normal direction the computational domain extends from the wall (z = —L) to a top boundary placed
at z = L,. Along the streamwise direction the computational domain extends from ¢ = —L,, upstream of
the sphere to z = L,4 downstream of the sphere. Along the spanwise direction the computational domain
extends on only one side of the sphere from —7 < y < 0, and a symmetry condition is enforced about the
midplane y = 0. The appropriateness of this symmetry condition is verified with corresponding simulations
performed over the entire span from y = —7 to y = 7. Disturbances which are asymmetric about the midplane
were introduced, but the disturbances decayed, even for the unsteady cases at the highest Reynolds number



of 300 considered here. Thus symmetry about the midplane is maintained for all cases to be discussed. At
the upstream end of the computational domain (x = —L,) the inflow condition, u = Uey, is applied. At
the downstream end a convective outflow boundary condition is applied. At the top and lateral boundaries
we enforce Ju/0z = 0 and du/dy = 0, respectively. On the bottom plate a no-slip, no-penetration boundary
condition in the moving frame of reference, u = Uey, is applied.

The results to be presented here are obtained with a large computational domain given by L, = 8, Ly, =
8, Lyq = 16 (this domain will be referred to as D1). A total of 1696 spectral elements are used to discretize
the computational domain (see figure 2) and within each element a polynomial expansion of 5 x § x 5 is used.
The placement of top, upstream and downstream boundaries of the computational domain are likely to have
the largest influence on the resulting flow and the hydrodynamic force and torque on the sphere. In order
to verify the adequacy of the above domain, we also performed simulations in a larger domain (D2) given
by L, =12, L,, = 8, L,q = 24. The larger domain was discretized with 2296 spectral elements of 5 x 5 x 5
resolution. The cross-sectional area of the sphere as seen by the flow is only 0.65% of the cross-sectional
area of the computational domain D1 and only 0.44% for the larger domain D2. Thus the blockage effect is
likely to be minimal for both the computational domains. Care was taken to maintain the level of resolution
the same in both domains D1 and D2. Drag, lift and moment coefficients, for Re = 10 and 200, computed
with the two different domains for the case of particle center at one diameter away from the plate (L = 1)
are reported in table 1. From table 1, it is clear that the domain D1 is sufficient for accurately evaluating
the drag, lift and moment coefficients.

| | | Smaller Domain(D1) | Larger Domain(D2) |

Re=10 | Cp 4.721E40 4.717E+0
Cr 3.511E-1 3.510E-1
Cu 1.512E-2 1.480E-2
Re =200 | Cp 8.156E-1 8.152E-1
CL 6.003E-2 6.000E-2
Cu 1.346E-3 1.300E-3

Table 1: Effect of the size of the computational domain on the drag, lift, moment coefficients for the case
L=1.

We address the adequacy of resolution by comparing the results obtained from two different orders of
polynomial expansion. Table 2 lists drag, lift and moment coefficients for Re = 10 and 200 at L = 1 for
polynomial expansions of order 5 x 5 x 5 and 9 x 9 x 9. Comparing the two columns it can be observed
that the maximum difference is 0.20% for drag coefficient, 1.1% for lift coefficient, and 0.30% for moment
coefficient. Therefore, the resolution of 5 x 5 x 5 will be employed in this study.

| | | 5x5x5 [ 9x9x9 |

Re=10 | Cp | 4.721E+0 | 4.721E+0
Cr | 3.511E-1 | 3.512E-1
Cy | 1.512E-2 | 1.513E-2
Re=200 | Cp | 8.156E-1 | 8.172E-1
Cr | 6.003E-2 | 6.070E-2
Cum | 1.346E-3 | 1.342E-3

Table 2: Effect of resolution, varied in terms of the order of polynomial expansions within each spectral-
element, on the drag, lift and moment coeflicients.
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4 Results and discussions

4.1 Flow field

Figure 3 shows the streamlines around the sphere on the y = 0 symmetry plane for Re = 2,10 and 200 at
L =0.75 and for Re = 200 at L = 2. On the symmetry plane the spanwise component of velocity, w = 0 and
therefore fluid elements on this plane never leave the plane. The presence of the wall breaks the axisymmetry
of the flow around the sphere, which is well evident at all Re for the L = 0.75 case. As the distance from the
wall increases, for L = 2, asymmetry in the streamline is subtle, but can be observed. At the lower Reynolds
numbers the flow around the sphere remains attached, and at Re = 200 a recirculation region can be seen
in the wake, but unlike in a uniform flow, significant asymmetry can be observed in the wake structure for
the L = 0.75 case. In particular, due to asymmetry, the flow can be observed to continue to accelerate even
downstream of the gap between the wall and the particle. This effect is not as strong at L = 2.

(@) (b)

Figure 3: Streamlines plotted along the symmetry plane y = 0. (a) Re = 2, L = 0.75; (b) Re = 10, L = 0.75;
(c) Re =200, L = 0.75; (d) Re = 200, L = 2.

Figure 4 shows the distribution of pressure coefficient, defined as C,, = (p — pwo)/ (3 pU?), plotted around
the sphere along the y = 0 midplane for the cases Re = 2, 10, 100 and 200 at L = 1. Here zero angle
corresponds to the front of the sphere and an angle of 180 degrees corresponds to the leeward side of the
sphere and both the top and bottom surfaces of the sphere are plotted separately for comparison. Without



the wall the pressure distribution is axisymmetric and there will be no difference between the top and bottom
surfaces. For a fixed distance from the wall the asymmetric effect of the wall can be observed to decrease
with increasing Reynolds number for Re up to 100. With further increase to Re = 200, the pressure on
the lower side can be observed to be greater than that on the upper side for all 8. The effect of this subtle
change on the lift force will be later discussed in Section 4.3.
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Figure 4: Distribution of the pressure coefficient around the sphere in the y = 0 plane for L = 1. (a) Re = 2
; (b) Re =10 ; (c) Re =100 ; (d) Re = 200; —— : along the top of the sphere; - - - : along the bottom.

For the rigid sphere considered here the surface distribution of shear stress is directly related to the
tangential () and azimuthal (¢) distributions of surface vorticity (see figure 1 for the definition of tangential
and azimuthal coordinates). Figure 5 shows the surface distribution of wy for the cases Re = 2, 10, 100, 200
at L = 1. wy is shown along three lines where the y = 0 and z = 0 planes intersect the sphere. The solid line
corresponds to the top of the sphere (¢ = 7), and the dash line is along the bottom of the sphere (¢ = 0),
and the dash-dot line is along the line where the z = 0 plane intersects the sphere (¢ = 7/2). The positive
value of ¢-vorticity over most of the sphere surface is due to the predominantly left to right ambient flow
within the boundary layer over the sphere. This component of surface vorticity (and the associated surface



shear stress 7,.¢) entirely accounts for the skin friction component of the drag. In the absence of wall effect
the surface distribution of wg will be axisymmetric. The top-bottom asymmetry observed in figure 5 can
contribute to a net z-force on the sphere.

At the lowest Reynolds number considered, the vorticity distribution is nearly symmetric about § = /2
indicating fore-aft symmetry. As was observed in the streamlines in figure 3(a) the effect of the wall is to
move down the front and rear stagnation points on the surface of the sphere below the poles toward the wall.
This translates to a small positive (or negative) value for wg on the upper (or bottom) side of the sphere as
8 — 0 and 7. The acceleration of the flow in the gap between the sphere and the plate results in a nearly
65% increase in wy at the bottom of the sphere when compared to the top.

With increasing Reynolds number to Re = 10, many of the features observed at the lower Reynolds
number can still be observed, but departure from fore-aft symmetry is significant. Due to the thinning of
the boundary layer the magnitude of vorticity increases and the peak azimuthal vorticity at the bottom of
the sphere is only 15% larger than its peak value at the top of the sphere. At Re = 100 and 200 the negative
surface azimuthal vorticity for § > 27/3 corresponds to flow separation and the presence of reversed flow
along the surface of the sphere within the recirculating wake (see figure 3(c)). Unlike in the lower Reynolds
number cases, at Re = 200, the peak vorticity at the bottom of the sphere is slightly lower than its peak at
the top.

Figure 6 shows the tangential component of surface vorticity along the line where z = 0 plane intersects
the sphere. Owing to the symmetry of the flow about the y = 0 plane, this component of vorticity is
identically zero along the top and bottom of the sphere (i.e., along the two other lines shown in figure 5).
Without the wall, the tangential component of vorticity, wy is identically zero and thus the distribution of
wy is indicative of the degree of azimuthal flow induced by the symmetry breaking effect of the wall. This
component of vorticity and the associated azimuthal component of wall shear stress, 7,4, contribute only to
the lift force.

On the ¢ = 7/2 plane, the sign (positive or negative) of wy indicates the direction (down or up) of the
z-component of the flow within the boundary layer around the sphere. Thus, at Re = 2 the flow is directed
slightly away from the wall on the windward side, but directed toward the wall on the leeward side. The
direction of this flow is consistent with the downward shift in the front and rear stagnation points below
the z = 0 plane. At this low Reynolds number there is almost fore-aft symmetry and therefore there will
be no net contribution to lift force. With increasing Re the distribution of wp is qualitatively the same on
the windward side. However, due to the formation of the wake, the behavior on the leeward side changes
with Re. In particular, at Re = 100 wp remains negative along the entire ¢ = /2 line, thus indicating a
positive z-component of the surface shear stress, which contributes to a net lift force directed away from the
wall. With further increase in Re above 100 a strong decrease in wy is seen and correspondingly a significant
contribution to positive z-force can be expected.

4.2 Drag force

Figure 7 shows the drag coefficient over the Reynolds number range 0.5 to 300 for varying separation distances
between the particle and the wall. Also plotted for comparison in the figure as a solid line is the standard
drag correlation (Schiller-Neumann formula; Clift et al. 1978):

24
Cp = E(l + 0.15Re%-687) 9)

From figure 7, it is clear that for a sphere moving parallel to the wall the drag force on the sphere increases
with decreasing distance between the sphere and the wall over the entire range of Reynolds number considered
here. For Re < 100, drag coefficient for all four separation distances considered here is larger than that given
by standard drag. Thus at this Reynolds number the effect of the wall is to increase the drag force. For
Re > 100 we observe that when the sphere is very close to the wall (i.e., for L = 0.75 and L = 1) the effect
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Figure 5: Distribution of ¢ component of surface vorticity along the lines, where the z = 0 and y = 0 planes
intersect the sphere. All results are for L = 1 at (a) Re = 2 ; (b) Re = 10 ; (c) Re = 100; (d) Re = 200 ;
—— : top of the sphere where y = 0 plane intersects the sphere; - - - : along the bottom where y = 0 plane
intersects the sphere; — - — : along the middle where z = 0 plane intersects the sphere.
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Figure 6: Distribution of § component of surface vorticity along the line where z = 0 plane intersects the
sphere. All results are for L =1 at (a) Re =2 ; (b) Re =10 ; (c) Re = 100; (d) Re = 200.
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of the wall still increases the drag coefficient. However, as the distance between the wall and the sphere
increases (i.e., for L = 2 and L = 4) the drag coefficient is lower than that for a uniform flow, although only
slightly.

Kim et al. (1993) considered forces on a pair of spheres settling side by side in still fluid. They observed
the drag coefficient to increase as the two spheres are very close to each other, but a close look at their results
indicate that for intermediate separation distances the drag coefficient is slightly lower than its asymptotic
value for a single isolated sphere. In the inviscid limit, the effect of a symmetry plane is to decrease the drag
force (Kok 1993). It thus appears that for larger separations from the wall, the inviscid effect dominates
over the viscous effect to bring about a slight decrease in the drag force.

The increase in drag coefficient can be justified in terms of the added viscous effect arising from the
presence of a nearby wall, but the slight decrease in drag coefficient with the presence of a wall can seem
surprising. This trend was also observed in the low Reynolds number asymptotic results of Vasseur & Cox
(1977) for a sphere sedimenting in a stagnant fluid bounded by a plane vertical wall. They observed that for
small distances from the wall, measured in terms of L* = LRe < 1, the drag coefficient increases and for
Re < L* < 1 the asymptotic form of the increase can be expressed as

27

o (10)

Cp — CD,free =
where Cp, free = 24/Re(1+ (3/8)Re) is the asymptotic low Reynolds number drag coefficient in the absence
of the wall. In contrast, as the distance from the wall increases, for Re <« 1 < L* the asymptotic form of
the decrease in drag coefficient was obtained as

9
CD - C’D,free = _ﬁ (11)
where § = 0.50698. They explained this decrease in drag coefficient in terms of a potential flow induced by
the inflow and outflow from the boundary layer on the wall, which close to the sphere is in the direction of
its motion and thus reduces the effective settling velocity.

The present finite Re results are only in qualitative agreement with the above low Re asymptotic predic-
tion. In figure 7(b) the computed finite Re drag coefficients are replotted as (Cp — Cp, free) L* vs. L*. The
present numerical results can be well fit by a straight-line of the form a+bL*, where the intercept, a = 66.654
and the slope, b = —8.364. The drag coefficient for the different distances from the wall and for varying Re
collapse well in figure 7(b). The switch from above to below Cp, tree Occurs at L* = 8, which is consistent
with the low Re behavior given in Vasseur & Cox (1977). For large values of L* the drag coefficient reaches
a constant value (0.736) and the approach to this constant value is as L* " and not as L* %2 as in the low
Re limit.

4.3 Lift force

Takemura & Magnaudet (2003) discussed two different mechanisms of lift force for the case of a sphere
moving parallel to a wall in an otherwise stagnant fluid. The vorticity generated at the sphere surface
advects and diffuses downstream and interacts with the wall and the effect of this interaction results in a
net lift force on the sphere directed away from the wall. On the other hand, the inviscid effect of the wall
is to accelerate the fluid in the gap between the sphere and the wall and thus result in a local low pressure
that corresponds to a net force on the sphere that is directed toward the wall. As observed by Takemura &
Magnaudet (2003), for a rigid sphere over the entire range of Reynolds number and distance from the wall
the first of the two mechanisms dominate and as a result the net lift force on the sphere is directed away
from the wall.

12
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Figure 7: (a) a plot of drag coefficient versus Re for the four different separation distances; (b) a plot of
rescaled drag coefficient, (Cp — Cp, free)L* against L*; O: L =4;0: L =2;+:L=1;%: L =0.75
the standard drag correlation given in Eqn. (9); — - —: curve fit (Cp — Cp, frec)L* = 66.654 — 8.364L*.

The lift force on the sphere as computed in the present simulations will be presented below. Figure 8(a)
shows the lift coefficient Cf, vs. the scaled separation distance L*. Also plotted in frame (a) as a thick solid
line is the asymptotic result of Vasseur & Cox (1977):

. 9. 11,
Vasseur & Cox : Cp = 3 [1 32L ] . (12)
For small values of L* (and correspondingly small values of Re) the computed C7, is in good agreement with
the above asymptotic result. As observed in the experiments of Cherukat & McLaughlin (1990) Eqn. (12)
provides a good approximation even up to L* = 4. With increasing L* the lift coefficient decreases rapidly
initially, but the rate of decrease at finite Reynolds number is consistently smaller than the asymptotic
prediction of (L*)~2. In the limit of Re < 1 the lift coefficient depends only on L*, however, as illustrated
by the measurements of Takemura & Magnaudet (2003) at finite Re, the lift coefficient is a function of both
L* and Re (or L and Re). The increase in lift over the asymptotic prediction becomes large (for a fixed L*)
with decreasing distance from the wall or increasing Re.

Also shown in figure 8(a) are dotted lines that connect data points for fixed Re. As pointed out by
Takemura & Magnaudet (2003), with increasing Reynolds number, from Re — 0 to about Re =~ 100, the
decay of the lift coefficient steadily increases from C, oc (L*)™2 to Cr o< (L*)~3%. This change in the decay
rate has been elegantly argued by Takemura & Magnaudet (2003) as due to the change in the behavior of
the disturbance flow from that of a Stokeslet at low Re to that of a dipole at higher Re. However, with
further increase in Reynolds number the decay rate decreases. This is clearly due to the fact that for a fixed
separation distance from the wall, Cr, does not continue to decrease with increasing L*, but in fact begins
to increase above a certain L*. A careful look at the data shows that the turn around occurs at Reynolds
number between 100 to 150, at all the four separation distances considered. Despite this dramatic increase,
at the highest Reynolds number considered (Re = 250) the lift coefficient is still an order of magnitude
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smaller than the L* — 0 limit of 9/8. With further increase in Re the flow becomes unsteady and the
critical Reynolds number for onset of unsteadiness depends on the distance of the sphere from the wall.
Simulations at higher Reynolds numbers in the unsteady regime indicate that the increase in C seen in
figure 8(a) does not continue for ever. Indications of this behavior can be seen in the data for L = 0.75.
Here we will first limit attention to drag and lift forces in the steady regime.

In figure 8 frame (a) shows the total lift coefficient, while frames (b) and (c) show the pressure and skin
friction contributions to the lift coefficient. As can be expected, at small values of L* the dominant contri-
bution is from skin friction, while at higher L* (and correspondingly higher Re) the dominant contribution
is from surface distribution of pressure. It is also clear that both the pressure and skin friction contributions
show the initially decreasing and then increasing trend seen in the overall lift coefficient.

Takemura & Magnaudet (2003) summarized their experimental results with the following model for the
lift coefficient

CL — CL0a2 (L/15)72 tanh(0.01 Re) (13)

where
a=1+0.6Re'/? — 0.55Re%%® (14)

and

(9/8 + 5.78 x 10~8L*4:58) 82ezp(—0.292L*) for 0 < L* < 10
CrLo = (15)

8.94 32 [+ 209 for 10 < L* < 300

Figure 9 compares the lift coefficient obtained from the present simulations with the above model. The
model is plotted only over the intended range of L* < 300. For the largest separation considered (L = 4)
good agreement extends for about L* < 200, and for the smallest separation (L = 0.75) good agreement can
be observed for L* < 100. For L* much larger the above model may underpredict lift coefficient by more
than an order of magnitude. This result is not surprising since the experiments of Takemura & Magnaudet
(2003) cover a range of Reynolds number from about 1 to 92 and in this range the agreement between the
experimental and computational results is quite good.

The down-and-up evolution of C with increasing L* is clearly a surprising behavior. The agreement
with the results of Vasseur & Cox (1977) at small values of L* and with the experiments of Takemura &
Magnaudet (2003) at moderate L* gives support to the accuracy of the present simulations. Additional
support comes from the simulations of Kim et al. (1993). For the case of two spheres settling side by side
in a stagnant fluid, at a fixed Re, they observed the lift coefficient to be large and positive for small values
of L. The lift coefficient decreased rapidly and took negative values as L increased above a threshold, which
depended on Re. Interestingly, their results for Re = 50,100 and 150 showed the down-and-up trend for
separation distances L = 0.75 and 1. For larger separations the lift coefficient monotonically decreased from
Re = 50, 100 to 150. Their results are also plotted in figure 9 as solid symbols. Given the differences in
configuration between the present simulations and those of Kim et al. (1993) the agreement is quite good.

The details of this down-and-up behavior can be explored in terms of surface pressure and shear stress
distributions shown in Section 4.1. As seen in figure 4, with increase in Re from 100 to 200, there was a
significant change in pressure distribution on the leeward side. The details of the pressure distribution (in
terms of coefficient of pressure) on the y = 0 plane at these two Reynolds numbers are shown in figure 10.
The change in pressure distribution on the leeward side can be seen to be associated with the formation of
a strong wake that is shifted and tilted down at Re = 200. This subtle change is responsible for the increase
in the pressure component of the lift force.

The effect of the strong and somewhat tilted wake at Re = 200 can be seen in the surface vorticity
distributions as well. In figure 5(c) the surface vorticity was nearly zero at the rear end of the sphere (angle
= 180°). Whereas, for Re = 200 the non-zero azimuthal vorticity at this location is indicative of surface
shear stress along the z-direction contributing positively to the lift force. The effect of this local flow directed
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away from the wall in the wake region can also be seen in figure 6 as the large negative tangential vorticity
for angle — 180°. Thus, clearly the wake through its location and orientation plays a significant role in
increasing both the pressure and skin friction contributions to lift.

The down-and-up trend in the lift coefficient can also be investigated in terms of the vorticity and inviscid
mechanisms of lift. Figure 11 shows a plot of the maximum fluid velocity within the gap between the wall
and the sphere as a function of Re for L = 1. It is very interesting to note that the maximum velocity also
shows a change in trend around Re = 100. Below this Reynolds number the maximum velocity within the
gap increases with Re. Correspondingly the inviscid lift contribution, which is directed toward the wall, can
be expected to increase. As Re increases above 100 the maximum velocity within the gap saturates and the
associated inviscid lift force can be expected to weaken as well. This behavior of the maximum velocity is
consistent with the down and up trend observed in the overall lift force, which is directed way from the wall.

Also plotted in figure 11 are the maximum surface vorticity obtained at L = 1 for the different Re
cases. As expected surface vorticity generation increases steadily with Re. A closer look at the wake vortical
structure is shown in figure 12, where the surface of constant swirling strength equal to 0.1 is plotted.
Swirling strength is defined as the imaginary part of the complex eigenvalue of the velocity gradient tensor
and as shown in Zhou et al. (1999) and Bagchi et al. (2001) it captures well compact vortical structures. For
each Reynolds number both the top view and side view of the three dimensional vortex structure are shown.
For Re = 50 a weak double thread can be seen in the wake. The double threaded wake gains strength and
extends farther downstream with increasing Reynolds number. Below a Reynolds number of 50 the double
threaded wake was absent.

In an unbounded uniform ambient flow the flow remains axisymmetric at lower Reynolds numbers. At
about Re = 210 there is a perfect bifurcation to a nonaxisymmetric state in which the wake vortex structure
takes the double threaded shape (Natarajan & Acrivos 1993, Tomboulides 1993, Johnson & Patel 1999,
Bagchi et al. 2001). The flow still remains steady and there exists a plane of symmetry that passes through
the center of the sphere. The normal to this plane of symmetry must be orthogonal to ambient flow direction,
but its orientation is otherwise arbitrary and is dictated only by the initial condition. The double thread is
one-sided and results in a transverse (lift) force on the sphere.

With the presence of a nearby wall the flow around the sphere is nonaxisymmetric at all Re. However,
based on figure 12 we believe that the flow undergoes an imperfect bifurcation to a state involving double
threaded vortical structure in the wake region. At L = 1 this bifurcation appears to occur at Re below 50.
Furthermore, the plane of symmetry is fixed to be wall normal (z — y plane) and as a result the transverse
force induced by the double threaded wake vortex structure is in the z-direction. While the other wall-
induced lift mechanisms are weakening with increasing Re, the double threaded wake induced lift force gains
strength after the imperfect bifurcation. It appears that the increase in overall lift coefficient observed in
figure 8(a) is due to the double threaded wake.

4.4 Moment coefficient

The symmetry breaking effect of the wall induces a net hydrodynamic moment on the sphere about the
y-axis. Figure 13 shows the moment coefficient versus Reynolds number for Re > 10. For smaller Reynolds
numbers the moment coefficient, unlike the force coefficients, shows a much greater sensitivity and requires
a much larger computational domain. The moment coefficient is in general small and rapidly decreases with
both L and Re.

The inset in figure 13 shows the present moment coeflicients at the higher Reynolds numbers compared
with those obtained by Kim et al. (1993) for the case of a pair of side by side spheres with a symmetry
plane between them. Note that the present results for L = 4 are compared against their results for L = 3.5
and L = 4.5. The comparison is acceptable for the smallest separation considered. At larger separation
distances, the two sets of results differ both qualitatively and quantitatively. The present moment coefficients
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are generally very small, remain positive and are not strongly Reynolds number dependent for Re > 50. In

contrast, the results of Kim et al.

negative at large Re.

(1993) continue

to decrease with increasing Re and in fact becomes
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Figure 13: (a) moment coefficient Car vs. Re; (b), (c) results for large Re cases are compared with those of
Kim et al. (1993). Symbols are the same in figure 9.

4.5 Effect of free rotation

A sphere in translational motion parallel to a flat wall will tend to rotate about the y-axis passing through
its center. This rotation is in response to the hydrodynamic torque acting on the sphere as outlined in the
previous section and depending on the sign of the torque the rotation will be either clockwise or counter-
clockwise. In all the cases that were considered so far, the sphere translated at a uniform velocity parallel to
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the wall, but was not allowed to rotate. Here by allowing free rotation of the sphere, we investigate its effect
on the flow field around the sphere and the resulting forces. In the simulations to be discussed below, the
starting condition is the corresponding "no-rotation" case and the sphere is subsequently allowed to angular
accelerate in response to the hydrodynamic torque acting on it. In all the cases considered here the sphere
reaches a terminal angular velocity at which the hydrodynamic torque becomes zero. A comparison of this
"rotating" steady state with the "non-rotating" steady state will isolate the influence of torque-free rotation.

In response to the torque exerted on it the free rotation of the sphere is in the clockwise direction, i.e., the
sphere rotates such that in the frame of reference moving with the particle, its rotation will aid the ambient
flow in the gap between the particle and the wall. This result at finite Re is in qualitative agreement with
the low Reynolds number behavior (Faxen 1921, Faxen 1924, Magnaudet et al. 2003 ), consistent with figure
13, the torque free rotation rates are quite small. The computed drag coefficients for a non-rotating sphere
and for the corresponding torque-free rotating sphere at L = 1 are plotted together with Eqn. (9) in figure
14. The effect of free-rotation can be seen to be quite small over the entire range of L*. The results for other
separations are quite similar and therefore not shown here. This relatively minor influence of free rotation
on the drag force is consistent with the asymptotic and low Re experimental results of Cox & Hsu (1977)
and Cherukat & McLaughlin (1994).

The little influence of sphere rotation on drag force is not surprising. Rotation is likely to have a stronger
influence on the lift force. The computed lift coefficients for the torque-free rotating and non-rotating spheres
at L = 1 are shown in figure 15. As Re — 0 the percentile change in lift force due to torque-free rotation
is quite small. In the context of an unbounded linear shear flow, for Re < 1, Saffman (1965) showed that
rotation-induced lift force is asymptotically smaller than shear-induced lift force. The present results show
a similar behavior, i.e., for Re < 1 rotation-induced lift force is asymptotically smaller than wall-induced
lift force. At larger Re the effect of torque-free rotation on lift, although still remains small, is measurable.
Further separation of the total lift into pressure and skin friction contributions shows that the dominant
effect of rotation comes from the surface distribution of pressure.

The small effect of torque-free rotation on drag and lift forces, and hence on the translational motion of
the sphere, over a wide Reynolds number range has been discussed in the context of an unbounded shear
flow by Bagchi & Balachandar (2002). The present results for a sphere translating parallel to a plane wall
show very similar behavior. Additional contribution from sphere rotation can be expressed in terms of a
Magnus lift coefficient as the difference

Cr,mg(Re, Q) = CL(Re, Qy) — CL(Re, Qg = 0) (16)

Rubinow & Keller (1961) showed the Magnus lift force on a spinning sphere in the Stokes limit to be
Cr,mg = Qd/|U|, where Q is the angular velocity of the spinning sphere and U is the relative velocity
between the sphere and the ambient flow. Figure 16 plots the Magnus lift coefficient obtained from the
present simulations, normalized by Q4.d/|U|, against Re for the different separation distances considered.
Except for very small Reynolds number the present results fall within the range 0.5 to 0.7. This behavior is
consistent with the results of Bagchi & Balachandar (2002), who observed the ratio Cr arq/(Qs:d/|U]) to be
about 0.55 for the case of a spinning sphere in an unbounded linear shear flow. The experiments of Tanaka
et al. (1990) and Tri et al. (1990) observed this ratio to be about 0.4 and 0.25, respectively.

4.6 Unsteady Regime

Here we extend the present simulations to Reynolds numbers above 250 into the unsteady regime. For all the
four separation distances, the results for Re = 250, 270 and 300 are listed in table 3. At Re = 250 for all four
separation distances the flow remains steady. In an unbounded uniform flow it has been well established that
the wake behind a sphere remains steady at Re = 250 (Taneda 1956, Magarvey & Bishop 1961, Natarajan
& Acrivos 1993, Tomboulides 1993, Johnson & Patel 1999). For the case of a sphere in a uniform ambient
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[ L [ Re=250 | Re=270 | Re=300 |
0.75 | O = 1.063E-1 | C; = 1.056E-1 | Cf = 1.034E-1

1 | Cr_7.649E-2 | Cp = 7.895E-2 | Cf, = 7.935E-2
C}, = 8.485E-3 | C}, = 2.063E-2
St =1.531E-1 | St = 1.556E-1
2 | CL=6.345E2 | C = 6.787E-2 | C, = 6.978E-2
Cp, = 3.277E-3 | C}, = 1.415E-2
St =1.323E-1 | St = 1.361E-1
4 | CL, =6.165E-2 | Cf, = 6.630E-2 | C;, = 6.858E-2
Cp = 1.537E-3 | C}, = 1.338E-2
St =1.337E-1 | St = 1.389E-1

Table 3: Lift coefficients and Strouhal number for different Re and separation distances.

flow the above experimental and numerical studies suggest a critical Reynolds number of about 270 for the
onset of unsteadiness and vortex shedding. In particular, the recent numerical simulations of Johnson &
Patel (1999) yield a steady flow at Re = 270, and an unsteady flow at Re = 280, thus suggesting a transition
somewhere in between.

The presence of a nearby wall will influence the onset of unsteadiness in two different ways. The added
viscous effect of the wall will be to delay the onset of unsteadiness. Whereas, the asymmetry introduced by
the wall can be argued to promote early shedding. The results shown in table 3 illustrate the competition
between these two opposing mechanisms. For the smallest separation of L = 0.75 considered, the flow
remains steady even at Re = 300 and thus the added viscous effect of the very close-by wall is to delay
the onset of unsteadiness. In contrast, for the other three separation distances the flow is unsteady even at
Re = 270, and thus steady-to-unsteady transition occurs somewhere between 250 to 270.

In all the unsteady cases considered the flow is perfectly periodic and the nondimensional shedding
frequency is presented in table 3 as the Strouhal number (St). At a fixed distance from the wall the Strouhal
number increases with Re. For the largest separation considered (L = 4) at Re = 300 the shedding frequency,
St = 0.139, is in good agreement with the values of 0.136 and 0.137 obtained by Tomboulides (1993) and
Johnson & Patel (1999) in the limit of an unbounded uniform flow. The Strouhal number increases by about
15% as the wall is approached, i.e., for L = 1.

For each of the unsteady cases the table also lists the amplitude of lift fluctuation (C7). From the
amplitude of lift fluctuation it is clear that at L = 4 the flow is barely unsteady and the critical Reynolds
number is just below 270. With further increase in separation distance, it is likely that the critical Reynolds
number will increase above 270 as L — oo, consistent with the results of Johnson & Patel (1999). Between
L = 4 and L = 1 the critical Reynolds number decreases well below 270, but remains above 250. As
separation distance further decreases to L = 0.75, the critical Reynolds number rapidly increases above 300.

The mean lift coefficient for increasing Re from 250 to 300 illustrates the saturation process addressed
in section 4.3. For the smallest separation distance, the lift coefficient has already begun to decrease as
Re increases above 250. For the intermediate separations (L = 1 and 2) the lift coefficient continues to
monotonically increases from Re = 250 to Re = 300. However, the rate of increase slows down, clearly
suggesting saturation with further increase in Re above 300.

Finally figure 17 shows the vortical structure of the wake region in the unsteady regime. Vortex shedding
is one-sided with interconnected hairpin vortex loops, similar to that observed by Johnson & Patel (1999)
for the uniform flow case. Unlike in an unbounded uniform flow, the plane of symmetry of the wake vortical
structure is dictated to be normal to the wall. Thus the time-dependent transverse force arising from the
one-sided vortex shedding is along the wall normal direction.
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Figure 17: Instantaneous vortical structure in the unsteady regime for Re = 300 at L = 1.
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5 Conclusions

Here we discuss results from direct numerical simulations of flow around a rigid sphere moving parallel to a
flat wall in an otherwise stagnant ambient fluid. We consider a Reynolds number range from 0.5 to 300 at
four different separation distances between the wall and the center of the sphere equal to 0.75, 1, 2 and 4
sphere diameters.

The present results at the lowest Reynolds number are in good agreement with the asymptotic results of
Vasseur & Cox (1977). At higher Reynolds numbers, from about 1 to 100, the computed lift coefficients are
in good agreement with the model proposed by Takemura & Magnaudet (2003), based on their experimental
measurements. Above Re & 100 we observe an interesting trend of increasing lift coefficient, which eventually
saturates above a Reynolds number of about 250, when the flow becomes unsteady. This down and up trend
in the lift coefficient is in agreement with the computational results of Kim et al. (1993) for the case of two
side by side spheres settling in stagnant fluid. This trend is also seen in both the pressure and skin friction
components. The wake behind the sphere is observed to undergo an imperfect bifurcation resulting in the
development of a double threaded vortex structure. This bifurcation is akin to that in an unbounded ambient
flow at Re = 210, where the axisymmetry of the wake gives way to a plane of symmetry. The formation of
the double threaded wake appears to be responsible for the increase in lift.

At small separation distances the effect of the wall is to increase the drag coefficient above that of an
unbounded uniform flow. At intermediate distances, however, the effect of the wall can result in a small,
but finite, reduction in the drag coefficient below that of a uniform flow. Thus, at all finite Re considered
the asymptotic approach to uniform flow result (as L — o0) is from below. This behavior is consistent with
the low Re results of Vaseeur & Cox (1977). We observe the drag coeflicient for all separations and Re to
be well fit by: Cp = (24/Re) (1 + (3/8)Re) + 66.654/L* — 8.364.

Due to the presence of the wall the sphere experiences a net hydrodynamic moment about the y-axis. At
low Re the moment coefficient is negative, but it rapidly increases and becomes positive even with a small
increase in Re. With further increase in Re the moment coefficient reaches a positive peak and slowly decays
to very small values. The present moment coefficients at the higher Reynolds numbers are compared with
those obtained by Kim et al. (1993).

In addition to non-rotating spheres we also considered the effect of free rotation, where the sphere is
allowed to rotate in response to hydrodynamic torque acting on it and reach a final torque-free steady
state. The direction and magnitude of terminal angular velocity of the rotating sphere is consistent with the
moment coefficient measured for the non-rotating spheres. The effect of torque-free sphere rotation on the
drag force is negligible. The effect of rotation is to increase the lift coeflicient slightly and the increase can be
estimated as a Magnus lift contribution with a scaling factor of about 0.5 to 0.7. This behavior is similar to
that observed for a freely rotating sphere in an unbounded linear shear flow (Bagchi & Balachandar 2002).

Simulations were extended to Reynolds numbers above 250 to explore the onset of unsteadiness. The
results of Johnson & Patel (1999) show that in an unbounded uniform ambient flow the wake becomes
unsteady between 270 and 280. For the largest separation considered (L = 4) we observe the wake to
become unsteady at Re slightly below 270. With decreasing separation distance from the wall from L = 4 to
L =1 the critical Re for onset of unsteadiness further decreases below 270 (but remains above 250). As the
separation distance decreases further to L = 0.75 the critical Re dramatically increases, perhaps due to the
dominant stabilizing viscous effect of the nearby wall. At this separation distance the flow remains steady
even at Re = 300.
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