58 research outputs found

    Metal insulator transition in TlSr2CoO5 from orbital degeneracy and spin disproportionation

    Full text link
    To describe the metal insulator transition in the new oxide TlSr2CoO5 we investigate its electronic structure by LDA and model Hartree-Fock calculations. Within LDA we find a homogeneous metallic and ferromagnetic ground state, but when including the Coulomb interaction more explicitly within the Hartree-Fock approximation, we find an insulating state of lower energy with both spin and orbital order. We also interpret our results in terms of a simple model.Comment: 8 pages, 9 figure

    Theory of nonlinear Landau-Zener tunneling

    Full text link
    A nonlinear Landau-Zener model was proposed recently to describe, among a number of applications, the nonadiabatic transition of a Bose-Einstein condensate between Bloch bands. Numerical analysis revealed a striking phenomenon that tunneling occurs even in the adiabatic limit as the nonlinear parameter CC is above a critical value equal to the gap VV of avoided crossing of the two levels. In this paper, we present analytical results that give quantitative account of the breakdown of adiabaticity by mapping this quantum nonlinear model into a classical Josephson Hamiltonian. In the critical region, we find a power-law scaling of the nonadiabatic transition probability as a function of C/V1C/V-1 and α\alpha , the crossing rate of the energy levels. In the subcritical regime, the transition probability still follows an exponential law but with the exponent changed by the nonlinear effect. For C/V>>1C/V>>1, we find a near unit probability for the transition between the adiabatic levels for all values of the crossing rate.Comment: 9 figure

    Fluctuation induced hopping and spin polaron transport

    Full text link
    We study the motion of free magnetic polarons in a paramagnetic background of fluctuating local moments. The polaron can tunnel only to nearby regions of local moments when these fluctuate into alignment. We propose this fluctuation induced hopping as a new transport mechanism for the spin polaron. We calculate the diffusion constant for fluctuation induced hopping from the rate at which local moments fluctuate into alignment. The electrical resistivity is then obtained via the Einstein relation. We suggest that the proposed transport mechanism is relevant in the high temperature phase of the Mn pyrochlore colossal magneto resistance compounds and Europium hexaboride.Comment: 8 pages, 3 figure

    Metallic ferromagnetism without exchange splitting

    Full text link
    In the band theory of ferromagnetism there is a relative shift in the position of majority and minority spin bands due to the self-consistent field due to opposite spin electrons. In the simplest realization, the Stoner model, the majority and minority spin bands are rigidly shifted with respect to each other. Here we consider models at the opposite extreme, where there is no overall shift of the energy bands. Instead, upon spin polarization one of the bands broadens relative to the other. Ferromagnetism is driven by the resulting gain in kinetic energy. A signature of this class of mechanisms is that a transfer of spectral weight in optical absorption from high to low frequencies occurs upon spin polarization. We show that such models arise from generalized tight binding models that include off-diagonal matrix elements of the Coulomb interaction. For certain parameter ranges it is also found that reentrant ferromagnetism occurs. We examine properties of these models at zero and finite temperatures, and discuss their possible relevance to real materials

    Development of a tight-binding potential for bcc-Zr. Application to the study of vibrational properties

    Get PDF
    We present a tight-binding potential based on the moment expansion of the density of states, which includes up to the fifth moment. The potential is fitted to bcc and hcp Zr and it is applied to the computation of vibrational properties of bcc-Zr. In particular, we compute the isothermal elastic constants in the temperature range 1200K < T < 2000K by means of standard Monte Carlo simulation techniques. The agreement with experimental results is satisfactory, especially in the case of the stability of the lattice with respect to the shear associated with C'. However, the temperature decrease of the Cauchy pressure is not reproduced. The T=0K phonon frequencies of bcc-Zr are also computed. The potential predicts several instabilities of the bcc structure, and a crossing of the longitudinal and transverse modes in the (001) direction. This is in agreement with recent ab initio calculations in Sc, Ti, Hf, and La.Comment: 14 pages, 6 tables, 4 figures, revtex; the kinetic term of the isothermal elastic constants has been corrected (Eq. (4.1), Table VI and Figure 4

    Self-induced and induced transparencies of two-dimensional and three- dimensional superlattices

    Full text link
    The phenomenon of transparency in two-dimensional and three-dimensional superlattices is analyzed on the basis of the Boltzmann equation with a collision term encompassing three distinct scattering mechanisms (elastic, inelastic and electron-electron) in terms of three corresponding distinct relaxation times. On this basis, we show that electron heating in the plane perpendicular to the current direction drastically changes the conditions for the occurrence of self-induced transparency in the superlattice. In particular, it leads to an additional modulation of the current amplitudes excited by an applied biharmonic electric field with harmonic components polarized in orthogonal directions. Furthermore, we show that self-induced transparency and dynamic localization are different phenomena with different physical origins, displaced in time from each other, and, in general, they arise at different electric fields.Comment: to appear in Physical Review

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Comparison of advanced gravitational-wave detectors

    Get PDF
    We compare two advanced designs for gravitational-wave antennas in terms of their ability to detect two possible gravitational wave sources. Spherical, resonant mass antennas and interferometers incorporating resonant sideband extraction (RSE) were modeled using experimentally measurable parameters. The signal-to-noise ratio of each detector for a binary neutron star system and a rapidly rotating stellar core were calculated. For a range of plausible parameters we found that the advanced LIGO interferometer incorporating RSE gave higher signal-to-noise ratios than a spherical detector resonant at the same frequency for both sources. Spheres were found to be sensitive to these sources at distances beyond our galaxy. Interferometers were sensitive to these sources at far enough distances that several events per year would be expected

    Large-amplitude driving of a superconducting artificial atom: Interferometry, cooling, and amplitude spectroscopy

    Get PDF
    Superconducting persistent-current qubits are quantum-coherent artificial atoms with multiple, tunable energy levels. In the presence of large-amplitude harmonic excitation, the qubit state can be driven through one or more of the constituent energy-level avoided crossings. The resulting Landau-Zener-Stueckelberg (LZS) transitions mediate a rich array of quantum-coherent phenomena. We review here three experimental works based on LZS transitions: Mach-Zehnder-type interferometry between repeated LZS transitions, microwave-induced cooling, and amplitude spectroscopy. These experiments exhibit a remarkable agreement with theory, and are extensible to other solid-state and atomic qubit modalities. We anticipate they will find application to qubit state-preparation and control methods for quantum information science and technology.Comment: 13 pages, 5 figure
    corecore