12 research outputs found

    Lateralization difference in functional activity during Stroop tasks: a functional near-infrared spectroscopy and EEG simultaneous study

    Get PDF
    IntroductionConflict monitoring and processing is an important part of the human cognitive system, it plays a key role in many studies of cognitive disorders.MethodsBased on a Chinese word-color match Stroop task, which included incongruent and neutral stimuli, the Electroencephalogram (EEG) and functional Near-infrared Spectroscopy (fNIRS) signals were recorded simultaneously. The Pearson correlation coefficient matrix was calculated to analyze brain connectivity based on EEG signals. Granger Causality (GC) method was employed to analyze the effective connectivity of bilateral frontal lobes. Wavelet Transform Coherence (WTC) was used to analyze the functional connectivity of the bilateral hemisphere and ipsilateral hemisphere.ResultsResults indicated that brain connectivity analysis on EEG signals did not show any significant lateralization, while fNIRS analysis results showed the frontal lobes especially the left frontal lobe play the leading role in dealing with conflict tasks. The human brain shows leftward lateralization while processing the more complicated incongruent stimuli. This is demonstrated by the higher functional connectivity in the left frontal lobe and the information flow from the left frontal lobe to the right frontal lobe.DiscussionOur findings in brain connectivity during cognitive conflict processing demonstrated that the dual modality method combining EEG and fNIRS is a valuable tool to excavate more information through cognitive and physiological studies

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Utilization of Construction Waste Recycled Powder as Filler in Asphalt Concrete

    No full text
    Processing construction waste into aggregate and reusing it in asphalt pavement is beneficial in terms of environmental protection and resource utilization. However, recycled aggregate (RA) possesses some property defects. Therefore, RA usually needs to be strengthened by modification technologies prior to use. In order to promote the convenient and low-cost utilization of construction waste, a new method of preparing construction waste into powder and using recycled powder (RP) as asphalt filler is proposed in this research. The property defects of RA and the applicability of RP used as filler were first analyzed based on their material characteristics. Then, asphalt concrete with RP was designed according to the Superpave method, and the engineering performance of the asphalt mixture was further investigated. According to the results, we recommend the use of acidic RP in combination with other highly alkaline fillers, such as Portland cement (PC), with a suitable blending ratio of RP to PC of 1:1. Preparing asphalt concrete with filler composed of RP and PC can achieve satisfactory engineering performance

    Open access dataset integrating EEG and fNIRS during Stroop tasks

    No full text
    Abstract Conflict monitoring and processing are crucial components of the human cognitive system, with significant implications for daily life and the diagnosis of cognitive disorders. The Stroop task, combined with brain function detection technology, has been widely employed as a classical paradigm for investigating conflict processing. However, there remains a lack of public datasets that integrate Electroencephalogram (EEG) and functional Near-infrared Spectroscopy (fNIRS) to simultaneously record brain activity during a Stroop task. We introduce a dual-modality Stroop task dataset incorporating 34-channel EEG (sampling frequency is 1000 Hz) and 20-channel high temporal resolution fNIRS (sampling frequency is 100 Hz) measurements covering the whole frontal cerebral cortex from 21 participants (9 females/12 males, aged 23.0 ± 2.3 years). Event-related potential analysis of EEG recordings and activation analysis of fNIRS recordings were performed to show the significant Stroop effect. We expected that the data provided would be utilized to investigate multimodal data processing algorithms during cognitive processing

    Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate osteoarthritis of the knee in mice model by interacting with METTL3 to reduce m6A of NLRP3 in macrophage

    No full text
    Abstract Background Osteoarthritis (OA) is a prevalent degenerative joint disease that not only significantly impairs the quality of life of middle-aged and elderly individuals but also imposes a significant financial burden on patients and society. Due to their significant biological properties, extracellular vesicles (EVs) have steadily received great attention in OA treatment. This study aimed to investigate the influence of EVs on chondrocyte proliferation, migration, and apoptosis and their protective efficacy against OA in mice. Methods The protective impact of EVs derived from human umbilical cord mesenchymal stem cells (hucMSCs-EVs) on OA in mice was investigated by establishing a mouse OA model by surgically destabilizing the medial meniscus (DMM). Human chondrocytes were isolated from the cartilage of patients undergoing total knee arthroplasty (TKA) and cultured with THP-1 cells to mimic the in vivo inflammatory environment. Levels of inflammatory factors were then determined in different groups, and the impacts of EVs on chondrocyte proliferation, migration, apoptosis, and cartilage extracellular matrix (ECM) metabolism were explored. N6-methyladenosine (m6A) level of mRNA and methyltransferase-like 3 (METTL3) protein expression in the cells was also measured in addition to microRNA analysis to elucidate the molecular mechanism of exosomal therapy. Results The results indicated that hucMSCs-EVs slowed OA progression, decreased osteophyte production, increased COL2A1 and Aggrecan expression, and inhibited ADAMTS5 and MMP13 overexpression in the knee joint of mice via decreasing pro-inflammatory factor secretion. The in vitro cell line analysis revealed that EVs enhanced chondrocyte proliferation and migration while inhibiting apoptosis. METTL3 is responsible for these protective effects. Further investigations revealed that EVs decreased the m6A level of NLRP3 mRNA following miR-1208 targeted binding to METTL3, resulting in decreased inflammatory factor release and preventing OA progression. Conclusion This study concluded that hucMSCs-EVs inhibited the secretion of pro-inflammatory factors and the degradation of cartilage ECM after lowering the m6A level of NLRP3 mRNA with miR-1208 targeting combined with METTL3, thereby alleviating OA progression in mice and providing a novel therapy for clinical OA treatment
    corecore