12 research outputs found

    Design and evaluation of a powered prosthetic foot with monoarticular and biarticular actuation

    Get PDF
    To overcome the limitations of passive prosthetic feet, powered prostheses have been developed, that can provide the range of motion and power of their human counterparts. These devices can equalize spatio-temporal gait parameters and improve the metabolic effort compared to passive prostheses, but asymmetries and compensatory motions between the healthy and impaired leg remain. Unlike their human counter part, existing powered prosthetic feet are fully monoarticular actuating only the prosthetic ankle joint, whereas in the biological counter part, ankle and knee joint are additionally coupled by the biarticular gastrocnemius muscle. The goal of this work is to investigate the benefits of a powered biarticular transtibial prosthesis comprising mono- and biarticular actuators similar to the human example. The contributions of the present work are as follows: A biarticular prosthesis prototype is methodically designed to match the capabilities of the monoarticular muscles at the human ankle joint as well as the biarticular gastrocnemius muscle during level walking. The prototype consists of an existing powered monoarticular prosthetic foot, which is extended with a knee orthoses and a stationary biarticular Bowden cable actuator. Both actuators are modeled as serial elastic actuators (SEA) and the identification of the model parameters is conducted. A model based torque control utilizing the measurements commonly available in SEAs, an impedance control law based on human ankle reference trajectories, and a high level control to enable steady walking in the lab are introduced. The proposed hardware setup and control structure can provide sagittal plane angles and torques similar to the mono- and biarticular muscles at the human ankle, with proper torque tracking performance and a freely adjustable allocation of torque between the monoarticular and biarticular actuator. The biarticular prosthesis is evaluated in the gait lab with three subjects with unilateral transtibial amputation utilizing a continuous sweep experimental protocol to investigate the metabolic effort and spatio-temporal gait parameters. All subjects show a tendency to reduced metabolic effort for medium activity of the artificial gastrocnemius, although noise level and time variation are large. In addition to the reduction in metabolic effort, the artificial gastrocnemius is able to influence spatio temporal gait parameters between the impaired and the intact side, but partially opposing effects are observed among the individual subjects. In conclusion, this thesis describes the implementation of an artificial gastrocnemius following the human example and the systematic investigation of metabolic effort and spatio-temporal gait parameters. It is shown that the addition of the artificial gastrocnemius to a monoarticular prosthesis can positively affect the investigated parameters. The meaningfulness of the results should be improved by increased clinical effort in future work

    Exploring surface electromyography (EMG) as a feedback variable for the human-in-the-loop optimization of lower limb wearable robotics

    Get PDF
    Human-in-the-loop (HITL) optimization with metabolic cost feedback has been proposed to reduce walking effort with wearable robotics. This study investigates if lower limb surface electromyography (EMG) could be an alternative feedback variable to overcome time-intensive metabolic cost based exploration. For application, it should be possible to distinguish conditions with different walking efforts based on the EMG. To obtain such EMG data, a laboratory experiment was designed to elicit changes in the effort by loading and unloading pairs of weights (in total 2, 4, and 8 kg) in three randomized weight sessions for 13 subjects during treadmill walking. EMG of seven lower limb muscles was recorded for both limbs. Mean absolute values of each stride prior to and following weight loading and unloading were used to determine the detection rate (100% if every loading and unloading is detected accordingly) for changing between loaded and unloaded conditions. We assessed the use of multiple consecutive strides and the combination of muscles to improve the detection rate and estimated the related acquisition times of diminishing returns. To conclude on possible limitations of EMG for HITL optimization, EMG drift was evaluated during the Warmup and the experiment. Detection rates highly increased for the combination of multiple consecutive strides and the combination of multiple muscles. EMG drift was largest during Warmup and at the beginning of each weight session. The results suggest using EMG feedback of multiple involved muscles and from at least 10 consecutive strides (5.5 s) to benefit from the increases in detection rate in HITL optimization. In combination with up to 20 excluded acclimatization strides, after changing the assistance condition, we advise exploring about 16.5 s of walking to obtain reliable EMG-based feedback. To minimize the negative impact of EMG drift on the detection rate, at least 6 min of Warmup should be performed and breaks during the optimization should be avoided. Future studies should investigate additional feedback variables based on EMG, methods to reduce their variability and drift, and should apply the outcomes in HITL optimization with lower limb wearable robots

    Combined estimation of gait phase and stair slope utilizing time history data

    No full text
    Improving the quality of life for people with amputations through active prostheses requires appropriate knowledge of the locomotion task and gait phase of the user. A shank mounted Inertial Measurement Unit based estimation method for stair slope is presented in conjunction with an improved gait phase estimation. In contrast to prior work only one Artificial Neural Network is used for the estimation of stair slope and gait phase for all three locomotion tasks and transitions between them. Utilizing past measurements should give more information to an estimation method without the need of additional sensors. By implementing a time window of 60 samples of prior measurements the gait phase and slope estimation could be improved by around 37 % and 38 % respectively comparing mean squared errors of the complete test dataset

    Spata7 is a retinal ciliopathy gene critical for correct RPGRIP1 localization and protein trafficking in the retina

    No full text
    Leber congenital amaurosis (LCA) and juvenile retinitis pigmentosa (RP) are severe hereditary diseases that causes visual impairment in infants and children. SPATA7 has recently been identified as the LCA3 and juvenile RP gene in humans, whose function in the retina remains elusive. Here, we show that SPATA7 localizes at the primary cilium of cells and at the connecting cilium (CC) of photoreceptor cells, indicating that SPATA7 is a ciliary protein. In addition, SPATA7 directly interacts with the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1), a key connecting cilium protein that has also been linked to LCA. In the retina of Spata7 null mutant mice, a substantial reduction of RPGRIP1 levels at the CC of photoreceptor cells is observed, suggesting that SPATA7 is required for the stable assembly and localization of the ciliary RPGRIP1 protein complex. Furthermore, our results pinpoint a role of this complex in protein trafficking across the CC to the outer segments, as we identified that rhodopsin accumulates in the inner segments and around the nucleus of photoreceptors. This accumulation then likely triggers the apoptosis of rod photoreceptors that was observed. Loss of Spata7 function in mice indeed results in a juvenile RP-like phenotype, characterized by progressive degeneration of photoreceptor cells and a strongly decreased light response. Together, these results indicate that SPATA7 functions as a key member of a retinal ciliopathy-associated protein complex, and that apoptosis of rod photoreceptor cells triggered by protein mislocalization is likely the mechanism of disease progression in LCA3/ juvenile RP patients
    corecore