595 research outputs found
VConv-DAE: Deep Volumetric Shape Learning Without Object Labels
With the advent of affordable depth sensors, 3D capture becomes more and more
ubiquitous and already has made its way into commercial products. Yet,
capturing the geometry or complete shapes of everyday objects using scanning
devices (e.g. Kinect) still comes with several challenges that result in noise
or even incomplete shapes. Recent success in deep learning has shown how to
learn complex shape distributions in a data-driven way from large scale 3D CAD
Model collections and to utilize them for 3D processing on volumetric
representations and thereby circumventing problems of topology and
tessellation. Prior work has shown encouraging results on problems ranging from
shape completion to recognition. We provide an analysis of such approaches and
discover that training as well as the resulting representation are strongly and
unnecessarily tied to the notion of object labels. Thus, we propose a full
convolutional volumetric auto encoder that learns volumetric representation
from noisy data by estimating the voxel occupancy grids. The proposed method
outperforms prior work on challenging tasks like denoising and shape
completion. We also show that the obtained deep embedding gives competitive
performance when used for classification and promising results for shape
interpolation
PlaNet - Photo Geolocation with Convolutional Neural Networks
Is it possible to build a system to determine the location where a photo was
taken using just its pixels? In general, the problem seems exceptionally
difficult: it is trivial to construct situations where no location can be
inferred. Yet images often contain informative cues such as landmarks, weather
patterns, vegetation, road markings, and architectural details, which in
combination may allow one to determine an approximate location and occasionally
an exact location. Websites such as GeoGuessr and View from your Window suggest
that humans are relatively good at integrating these cues to geolocate images,
especially en-masse. In computer vision, the photo geolocation problem is
usually approached using image retrieval methods. In contrast, we pose the
problem as one of classification by subdividing the surface of the earth into
thousands of multi-scale geographic cells, and train a deep network using
millions of geotagged images. While previous approaches only recognize
landmarks or perform approximate matching using global image descriptors, our
model is able to use and integrate multiple visible cues. We show that the
resulting model, called PlaNet, outperforms previous approaches and even
attains superhuman levels of accuracy in some cases. Moreover, we extend our
model to photo albums by combining it with a long short-term memory (LSTM)
architecture. By learning to exploit temporal coherence to geolocate uncertain
photos, we demonstrate that this model achieves a 50% performance improvement
over the single-image model
Comparison of high versus low frequency cerebral physiology for cerebrovascular reactivity assessment in traumatic brain injury: a multi-center pilot study
Current accepted cerebrovascular reactivity indices suffer from the need of high frequency data capture and export for post-acquisition processing. The role for minute-by-minute data in cerebrovascular reactivity monitoring remains uncertain. The goal was to explore the statistical time-series relationships between intra-cranial pressure (ICP), mean arterial pressure (MAP) and pressure reactivity index (PRx) using both 10-s and minute data update frequency in TBI. Prospective data from 31 patients from 3 centers with moderate/severe TBI and high-frequency archived physiology were reviewed. Both 10-s by 10-s and minute-by-minute mean values were derived for ICP and MAP for each patient. Similarly, PRx was derived using 30 consecutive 10-s data points, updated every minute. While long-PRx (L-PRx) was derived via similar methodology using minute-by-minute data, with L-PRx derived using various window lengths (5, 10, 20, 30, 40, and 60 min; denoted L-PRx_5, etc.). Time-series autoregressive integrative moving average (ARIMA) and vector autoregressive integrative moving average (VARIMA) models were created to analyze the relationship of these parameters over time. ARIMA modelling, Granger causality testing and VARIMA impulse response function (IRF) plotting demonstrated that similar information is carried in minute mean ICP and MAP data, compared to 10-s mean slow-wave ICP and MAP data. Shorter window L-PRx variants, such as L-PRx_5, appear to have a similar ARIMA structure, have a linear association with PRx and display moderate-to-strong correlations (r ~ 0.700, p Peer reviewe
Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence
Using kinetic particle-in-cell (PIC) simulations, we simulate reconnection
conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta
(ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic
shear (strong guide field). Changing the simulation domain size, we find that
the ion response varies greatly. For reconnecting regions with scales
comparable to the ion Larmor radius, the ions do not respond to the
reconnection dynamics leading to ''electron-only'' reconnection with very large
quasi-steady reconnection rates. The transition to more traditional
''ion-coupled'' reconnection is gradual as the reconnection domain size
increases, with the ions becoming frozen-in in the exhaust when the magnetic
island width in the normal direction reaches many ion inertial lengths. During
this transition, the quasi-steady reconnection rate decreases until the ions
are fully coupled, ultimately reaching an asymptotic value. The scaling of the
ion outflow velocity with exhaust width during this electron-only to
ion-coupled transition is found to be consistent with a theoretical model of a
newly reconnected field line. In order to have a fully frozen-in ion exhaust
with ion flows comparable to the reconnection Alfv\'en speed, an exhaust width
of at least several ion inertial lengths is needed. In turbulent systems with
reconnection occurring between magnetic bubbles associated with fluctuations,
using geometric arguments we estimate that fully ion-coupled reconnection
requires magnetic bubble length scales of at least several tens of ion inertial
lengths
“Am I my genes?”: Questions of identity among individuals confronting genetic disease
Purpose: To explore many questions raised by genetics concerning personal identities that have not been fully investigated.
Methods: We interviewed in depth, for 2 hours each, 64 individuals who had or were at risk for Huntington disease, breast cancer, or alpha-1 antitrypsin deficiency.
Results: These individuals struggled with several difficult issues of identity. They drew on a range of genotypes and phenotypes (e.g., family history alone; mutations, but no symptoms; or symptoms). They often felt that their predicament did not fit preexisting categories well (e.g., “sick,” “healthy,” “disabled,” “predisposed”), due in part to uncertainties involved (e.g., unclear prognoses, since mutations may not produce symptoms). Hence, individuals varied in how much genetics affected their identity, in what ways, and how negatively. Factors emerged related to disease, family history, and other sources of identity. These identities may, in turn, shape disclosure, coping, and other health decisions.
Conclusions: Individuals struggle to construct a genetic identity. They view genetic information in highly subjective ways, varying widely in what aspects of genetic information they focus on and how. These data have important implications for education of providers (to assist patients with these issues), patients, and family members; and for research, to understand these issues more fully
Rap1 binding and a lipid-dependent helix in talin F1 domain promote integrin activation in tandem.
Rap1 GTPases bind effectors, such as RIAM, to enable talin1 to induce integrin activation. In addition, Rap1 binds directly to the talin1 F0 domain (F0); however, this interaction makes a limited contribution to integrin activation in CHO cells or platelets. Here, we show that talin1 F1 domain (F1) contains a previously undetected Rap1-binding site of similar affinity to that in F0. A structure-guided point mutant (R118E) in F1, which blocks Rap1 binding, abolishes the capacity of Rap1 to potentiate talin1-induced integrin activation. The capacity of F1 to mediate Rap1-dependent integrin activation depends on a unique loop in F1 that has a propensity to form a helix upon binding to membrane lipids. Basic membrane-facing residues of this helix are critical, as charge-reversal mutations led to dramatic suppression of talin1-dependent activation. Thus, a novel Rap1-binding site and a transient lipid-dependent helix in F1 work in tandem to enable a direct Rap1-talin1 interaction to cause integrin activation
Individual User Behavior Leading Factor in Comfort Control
With global warming effects and exploding energy prices it is necessary to further optimize the energy performance of buildings. Intelligent Agents technology for individual climate control for each user of a building in combination with feedback on the energy consumption (costs) leads to better acceptance of the individual comfort and a reduction of the energy consumption. Agents at room level with knowledge of the actual preferences of the occupants are used to improve the distribution of the available HVAC resources of the building and lead to better performance with less energy consumption and at lower costs. At building level an agent is used to optimize the settings of HVAC-controls and lead to peak reduction. The technology was tested in field tests in different office buildings in the Netherlands
- …