279 research outputs found

    Robust nonparametric detection of objects in noisy images

    Full text link
    We propose a novel statistical hypothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of unknown distribution. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. In this paper, we develop further the mathematical formalism of our method and explore important connections to the mathematical theory of percolation and statistical physics. We prove results on consistency and algorithmic complexity of our testing procedure. In addition, we address not only an asymptotic behavior of the method, but also a finite sample performance of our test.Comment: This paper initially appeared in 2010 as EURANDOM Report 2010-049. Link to the abstract at EURANDOM repository: http://www.eurandom.tue.nl/reports/2010/049-abstract.pdf Link to the paper at EURANDOM repository: http://www.eurandom.tue.nl/reports/2010/049-report.pd

    Natural Hazards and Earth System Science / Spatial vulnerability units : expert-based spatial modelling of socio-economic vulnerability in the Salzach catchment, Austria

    Get PDF
    The assessment of vulnerability has moved to centre-stage of the debate between different scientific disciplines related to climate change and disaster risk management. Composed by a combination of social, economical, physical and environmental factors the assessment implies combining different domains as well as quantitative with qualitative data and makes it therefore a challenge to identify an integrated metric for vulnerability. In this paper we define vulnerability in the context of climate change, targeting the hazard "flood". The developed methodology is being tested in the Salzach river catchment in Austria, which is largely prone to floods. The proposed methodology allows the spatial quantification of vulnerability and the identification of vulnerability units. These units build upon the geon concept which acts as a framework for the regionalization of continuous spatial information according to defined parameters of homogeneity. Using geons, we are capable of transforming singular domains of information on specific systemic components to policy-relevant, conditioned information. Considering the fact that vulnerability is not directly measurable and due to its complex dimension and social construction an expert-based approach has been chosen. Established methodologies such as Multicriteria Decision Analysis, Delphi exercises and regionalization approaches are being integrated. The method not only enables the assessment of vulnerability independent from administrative boundaries, but also applies an aggregation mode which reflects homogenous vulnerability units. This supports decision makers to reflect on complex issues such as vulnerability. Next to that, the advantage is to decompose the units to their underlying domains. Feedback from disaster management experts indicates that the approach helps to improve the design of measures aimed at strengthening preparedness and mitigation. From this point of view, we reach a step closer towards validation of the proposed method, comprising critical user-oriented aspects like adequateness, practicability and usability of the provided results in general.(VLID)220919

    Vulnerability assessment for the eastern African region to identify hotspots

    Get PDF
    The output of this task identifies vulnerable sub-regions within the five country study area that can serve as the locus of higher resolution analysis and for testing adaptation strategies

    Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator.

    Get PDF
    Laser-plasma wakefield accelerators have seen tremendous progress, now capable of producing quasi-monoenergetic electron beams in the GeV energy range with few-femtoseconds bunch duration. Scaling these accelerators to the nanocoulomb range would yield hundreds of kiloamperes peak current and stimulate the next generation of radiation sources covering high-field THz, high-brightness X-ray and γ-ray sources, compact free-electron lasers and laboratory-size beam-driven plasma accelerators. However, accelerators generating such currents operate in the beam loading regime where the accelerating field is strongly modified by the self-fields of the injected bunch, potentially deteriorating key beam parameters. Here we demonstrate that, if appropriately controlled, the beam loading effect can be employed to improve the accelerator's performance. Self-truncated ionization injection enables loading of unprecedented charges of ∼0.5 nC within a mono-energetic peak. As the energy balance is reached, we show that the accelerator operates at the theoretically predicted optimal loading condition and the final energy spread is minimized.Higher beam quality and stability are desired in laser-plasma accelerators for their applications in compact light sources. Here the authors demonstrate in laser plasma wakefield electron acceleration that the beam loading effect can be employed to improve beam quality by controlling the beam charge

    How do field of view and resolution affect the information content of panoramic scenes for visual navigation? A computational investigation

    Get PDF
    The visual systems of animals have to provide information to guide behaviour and the informational requirements of an animal’s behavioural repertoire are often reflected in its sensory system. For insects, this is often evident in the optical array of the compound eye. One behaviour that insects share with many animals is the use of learnt visual information for navigation. As ants are expert visual navigators it may be that their vision is optimised for navigation. Here we take a computational approach in asking how the details of the optical array influence the informational content of scenes used in simple view matching strategies for orientation. We find that robust orientation is best achieved with low-resolution visual information and a large field of view, similar to the optical properties seen for many ant species. A lower resolution allows for a trade-off between specificity and generalisation for stored views. Additionally, our simulations show that orientation performance increases if different portions of the visual field are considered as discrete visual sensors, each giving an independent directional estimate. This suggests that ants might benefit by processing information from their two eyes independently

    Responsibility & Risk: Operationalizing comprehensive climate risk layering in Austria among multiple actors (RESPECT)

    Get PDF
    Damages caused by climate and weather extremes, such as floods and droughts, have increased over the last few decades and will likely broaden with the progression of climate change and socioeconomic development. Such climate-related risks are already being governed within the framework of natural disaster risk management, as well as climate change adaptation. However, to manage these climate risks more effectively it is necessary to link these two domains under the umbrella of Climate Risk Management (CRM)

    Framing vulnerability, risk and societal responses: the MOVE framework

    Get PDF
    The paper deals with the development of a general as well as integrative and holistic framework to systematize and assess vulnerability, risk and adaptation. The framework is a thinking tool meant as a heuristic that outlines key factors and different dimensions that need to be addressed when assessing vulnerability in the context of natural hazards and climate change. The approach underlines that the key factors of such a common framework are related to the exposure of a society or system to a hazard or stressor, the susceptibility of the system or community exposed, and its resilience and adaptive capacity. Additionally, it underlines the necessity to consider key factors and multiple thematic dimensions when assessing vulnerability in the context of natural and socio-natural hazards. In this regard, it shows key linkages between the different concepts used within the disaster risk management (DRM) and climate change adaptation (CCA) research. Further, it helps to illustrate the strong relationships between different concepts used in DRM and CCA. The framework is also a tool for communicating complexity and stresses the need for societal change in order to reduce risk and to promote adaptation. With regard to this, the policy relevance of the framework and first results of its application are outlined. Overall, the framework presented enhances the discussion on how to frame and link vulnerability, disaster risk, risk management and adaptation concepts

    COPERNICUS KNOWLEDGE and INNOVATION HUBS

    Get PDF
    Copernicus, the European Space program ensures free data availability and the organisational and financial framework to provide standardized information products in its service domains atmosphere, marine, land monitoring, climate change, emergency management and human security. A key to success to the market uptake process is knowledge exchange among all actors from the various sectors involved, notably research and educational institutions, industry, and the public sector. As a successful instrument to foster and stimulate this exchange, maximize the impact and additionally boost related capacity building and training activities, the Copernicus Academy has been anchored in the European Space Strategy. The present paper highlights some key activities to leverage the potential of this dynamically growing network of experts from universities and research institutions, public and private organizations, companies, stakeholders, and increase the benefit to its members. The vision of establishing both physical implementations of regional Copernicus hubs and virtual Copernicus hubs, built on key elements of the European Innovation strategy, is discussed. Regional hubs, attached e.g. to centres of excellence, are essential to meet local needs for exchange and training to boost the user uptake. The increasing importance of virtual hubs is becoming evident as a critical means to maximise synergies among actors in the rapidly advancing technological areas. Proposed technical elements demonstrate innovative solutions to visualize and facilitate easy harvesting of the Copernicus Academy membeŕs expertise for different stakeholder and the public, and show cast possibilities of active involvement and exchange within the network

    How Ants Use Vision When Homing Backward

    Get PDF
    Ants can navigate over long distances between their nest and food sites using visual cues [1, 2]. Recent studies show that this capacity is undiminished when walking backward while dragging a heavy food item [3, 4, 5]. This challenges the idea that ants use egocentric visual memories of the scene for guidance [1, 2, 6]. Can ants use their visual memories of the terrestrial cues when going backward? Our results suggest that ants do not adjust their direction of travel based on the perceived scene while going backward. Instead, they maintain a straight direction using their celestial compass. This direction can be dictated by their path integrator [5] but can also be set using terrestrial visual cues after a forward peek. If the food item is too heavy to enable body rotations, ants moving backward drop their food on occasion, rotate and walk a few steps forward, return to the food, and drag it backward in a now-corrected direction defined by terrestrial cues. Furthermore, we show that ants can maintain their direction of travel independently of their body orientation. It thus appears that egocentric retinal alignment is required for visual scene recognition, but ants can translate this acquired directional information into a holonomic frame of reference, which enables them to decouple their travel direction from their body orientation and hence navigate backward. This reveals substantial flexibility and communication between different types of navigational information: from terrestrial to celestial cues and from egocentric to holonomic directional memories

    Route following without scanning

    Get PDF
    Desert ants are expert navigators, foraging over large distances using visually guided routes. Recent models of route following can reproduce aspects of route guidance, yet the underlying motor patterns do not reflect those of foraging ants. Specifically, these models select the direction of movement by rotating to find the most familiar view. Yet scanning patterns are only occasionally observed in ants. We propose a novel route following strategy inspired by klinokinesis. By using familiarity of the view to modulate the magnitude of alternating left and right turns, and the size of forward steps, this strategy is able to continually correct the heading of a simulated ant to maintain its course along a route. Route following by klinokinesis and visual compass are evaluated against real ant routes in a simulation study and on a mobile robot in the real ant habitat. We report that in unfamiliar surroundings the proposed method can also generate ant-like scanning behaviours
    • …
    corecore