662 research outputs found

    Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps

    Full text link
    We investigate single ions of 40Ca+^{40}Ca^+ in Paul traps for quantum information processing. Superpositions of the S1/2_{1/2} electronic ground state and the metastable D5/2_{5/2} state are used to implement a qubit. Laser light on the S1/2_{1/2} \leftrightarrow D5/2_{5/2} transition is used for the manipulation of the ion's quantum state. We apply sideband cooling to the ion and reach the ground state of vibration with up to 99.9% probability. Starting from this Fock state n=0>|n=0>, we demonstrate coherent quantum state manipulation. A large number of Rabi oscillations and a ms-coherence time is observed. Motional heating is measured to be as low as one vibrational quantum in 190 ms. We also report on ground state cooling of two ions.Comment: 12 pages, 6 figures. submitted to Journal of Modern Optics, Special Issue on Quantum Optics: Kuehtai 200

    Dirac-Foldy term and the electromagnetic polarizability of the neutron

    Get PDF
    We reconsider the Dirac-Foldy contribution μ2/m\mu^2/m to the neutron electric polarizability. Using a Dirac equation approach to neutron-nucleus scattering, we review the definitions of Compton continuum (αˉ\bar{\alpha}), classical static (αEn\alpha^n_E), and Schr\"{o}dinger (αSch\alpha_{Sch}) polarizabilities and discuss in some detail their relationship. The latter αSch\alpha_{Sch} is the value of the neutron electric polarizability as obtained from an analysis using the Schr\"{o}dinger equation. We find in particular αSch=αˉμ2/m\alpha_{Sch} = \bar{\alpha} - \mu^2/m , where μ\mu is the magnitude of the magnetic moment of a neutron of mass mm. However, we argue that the static polarizability αEn\alpha^n_E is correctly defined in the rest frame of the particle, leading to the conclusion that twice the Dirac-Foldy contribution should be added to αSch\alpha_{Sch} to obtain the static polarizability αEn\alpha^n_E.Comment: 11 pages, RevTeX, to appear in Physical Review

    Calculations of the A_1 phonon frequency in photoexcited Tellurium

    Get PDF
    Calculations of the A_1 phonon frequency in photoexcited tellurium are presented. The phonon frequency as a function of photoexcited carrier density and phonon amplitude is determined. Recent pump probe experiments are interpreted in the light of these calculatons. It is proposed that, in conjunction with measurements of the phonon period in ultra-fast pump-probe reflectivity experiments, the calculated frequency shifts can be used to infer the evolution of the density of photoexcited carriers on a sub-picosecond time-scale.Comment: 15 pages Latex, 3 postscript figure

    Design and Tests of the Hard X-ray Polarimeter X-Calibur

    Get PDF
    X-ray polarimetry promises to give qualitatively new information bout high-energy astrophysical sources, such as binary black hole  systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested ahard X-ray polarimeter, X-Calibur, to be used in the focal plane of the InFOCuS grazing incidence hard X-ray telescope.X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20−60 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation; in principal, a similar space-borne experiment could be operated in the 5−100 keV regime. X-Calibur achieves a high detection efficiency of order unity

    Ultrafast changes in lattice symmetry probed by coherent phonons

    Full text link
    The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, in order to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. We show that a time-dependent change in the coherent phonon spectrum can probe a change in symmetry of the lattice potential, thus providing an all-optical probe of structural transitions. We examine the photoinduced structural phase transition in VO2 and show that, above the phase transition threshold, photoexcitation completely changes the lattice potential on an ultrafast timescale. The loss of the equilibrium-phase phonon modes occurs promptly, indicating a non-thermal pathway for the photoinduced phase transition, where a strong perturbation to the lattice potential changes its symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure

    Precision Astrometry with the Very Long Baseline Array: Parallaxes and Proper Motions for 14 Pulsars

    Full text link
    Astrometry can bring powerful constraints to bear on a variety of scientific questions about neutron stars, including their origins, astrophysics, evolution, and environments. Using phase-referenced observations at the VLBA, in conjunction with pulsar gating and in-beam calibration, we have measured the parallaxes and proper motions for 14 pulsars. The smallest measured parallax in our sample is 0.13+-0.02 mas for PSR B1541+09, which has a most probable distance of 7.2+1.3-1.1 kpc. We detail our methods, including initial VLA surveys to select candidates and find in-beam calibrators, VLBA phase-referencing, pulsar gating, calibration, and data reduction. The use of the bootstrap method to estimate astrometric uncertainties in the presence of unmodeled systematic errors is also described. Based on our new model-independent estimates for distance and transverse velocity, we investigate the kinematics and birth sites of the pulsars and revisit models of the Galactic electron density distribution. We find that young pulsars are moving away from the Galactic plane, as expected, and that age estimates from kinematics and pulsar spindown are generally in agreement, with certain notable exceptions. Given its present trajectory, the pulsar B2045-16 was plausibly born in the open cluster NGC 6604. For several high-latitude pulsars, the NE2001 electron density model underestimates the parallax distances by a factor of two, while in others the estimates agree with or are larger than the parallax distances, suggesting that the interstellar medium is irregular on relevant length scales. The VLBA astrometric results for the recycled pulsar J1713+0747 are consistent with two independent estimates from pulse timing, enabling a consistency check between the different reference frames.Comment: 16 pages, 9 figures, 4 tables; results unchanged; revised version accepted by Ap

    Anisotropic Spin Hamiltonians due to Spin-Orbit and Coulomb Exchange Interactions

    Get PDF
    This paper contains the details of Phys. Rev. Lett. 73, 2919 (1994) and, to a lesser extent, Phys. Rev. Lett. 72, 3710 (1994). We treat a Hubbard model which includes all the 3d states of the Cu ions and the 2p states of the O ions. We also include spin-orbit interactions, hopping between ground and excited crystal field states of the Cu ions, and rather general Coulomb interactions. Our analytic results for the spin Hamiltonian, H, are corroborated by numerical evaluations of the energy splitting of the ground manifold for two holes on either a pair of Cu ions or a Cu-O-Cu complex. In the tetragonal symmetry case and for the model considered, we prove that H is rotationally invariant in the absence of Coulomb exchange. When Coulomb exchange is present, each bond Hamiltonian has full biaxial anisotropy, as expected for this symmetry. For lower symmetry situations, the single bond spin Hamiltonian is anisotropic at order t**6 for constant U and at order t**2 for nonconstant U. (Constant U means that the Coulomb interaction between orbitals does not depend on which orbitals are involved.)Comment: 50 pages, ILATEX Version 2.09 <13 Jun 1989
    corecore