68 research outputs found

    Electronic polymers in lipid membranes

    Get PDF
    Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes

    Di- and Tetrairon(III) mu-Oxido Complexes of an N3S-Donor Ligand : Catalyst Precursors for Alkene Oxidations

    Get PDF
    The new di- and tetranuclear Fe(III) mu-oxido complexes [Fe-4(mu-O)(4) (PTEBIA)(4)]CF3SO3)(4)(CH3CN)(2)] (1a) , [Fe-2(mu-O)Cl-2(PTEBIA)(2)(CF3SO3)(2) (1b), and [Fe-2(mu-O)(HCOO)(2)(PTEBIA)(2)](ClO4)(2) (MeOH) (2) were prepared from the sulfur-containing ligand (2-((2,4-dimethylphenyl)thiO)-N,N-bis ((1-methyl-benzimidazol-2-yl)methyl)ethanamine (PTEBIA). The tetrairon complex 1a features four mu-oxido bridges, while in dinuclear 1b, the sulfur moiety of the ligand occupies one of the six coordination sites of each Fe(III) ion with a long Fe-S distance of 2.814(6) angstrom . In 2, two Fe(III) centers are bridged by one oxido and two formate units, the latter likely formed by methanol oxidation. Complexes 1a and 1 b show broad sulfur-toiron charge transfer bands around 400-430 nm at room temperature, consistent with mononuclear structures featuring Fe-S interactions. In contrast, acetonitrile solutions of 2 display a sulfur-to-iron charge transfer band only at low temperature (228 K) upon addition of H2O2/CH3COOH, with an absorption maximum at 410 nm. Homogeneous oxidative catalytic activity was observed for 1a and 1b using H2O2 as oxidant, but with low product selectivity. High valent iron-oxo intermediates could not be detected by UV-vis spectroscopy or ESI mass spectrometry. Rather, evidence suggest preferential ligand oxidation, in line with the relatively low selectivity and catalytic activity observed in the reactions.Peer reviewe

    Self-doped Conjugated Polyelectrolytes for Bioelectronics Applications

    No full text
    Self-doped conjugated polyelectrolytes (CPEs) are a class of conducting polymers constituted of a π-conjugated backbone and charged side groups. The ionic groups provide the counterions needed to balance the charged species formed in the CPEs backbones upon oxidation. As a result, addition of external counterions is not required, and the CPEs can be defined as selfdoped. The combination of their unique optical and electrical properties render them the perfect candidates for optoelectronic applications. Additionally, their “soft” nature provide for the mechanical compatibility necessary to interface with biological systems, rendering them promising materials for bioelectronics applications. CPEs solubility, aggregation state, and optoelectronic properties can be easily tuned by different means, such as blending or interaction with oppositely charged species (such as surfactants), in order to produce materials with the desired properties. In this thesis both the strategies have been explored to produce new functional materials that can be deposited to form a thin film and,  therefore, used as an active layer in organic electrochemical transistors (OECTs). Microstructure formation of the films as well as influence on devices operation and performance have been investigated. We also show that these methods can be exploited to produce materials whose uniquecombination of self-doping ability and hydrophobicity allows incorporation into the phospholipid double layer of biomembranes, while retaining their properties. As a result, self-doped CPEs can be used both as sensing elements to probe the physical state of biomembranes, and as functional ones providing them with new functionalities, such as electrical conductivity. Integration of conductive electronic biomembranes into OECTs devices has brought us one step forward on the interface of manmade technologies with biological systems

    Booklet Convegno Bioeletronics and Sustainability (BEES) Stockholm, October 26-27, 2023

    No full text
    BEES is the first platform to discuss the new trends in the field of organic bioelectronics, by gathering scientists from the Italian and Swedish scientific communities working on innovative bioelectronic materials, devices, and their applications. The scientific program covers among other topics: aspects of sustainable synthesis, alternative raw materials, advanced materials, unconventional device fabrication, and related applications in sensing, implantable devices, tissue engineering, and energy harvesting with the aim of fostering interaction and opportunities to strengthen the bilateral collaboration
    • 

    corecore