342 research outputs found

    Novel technique for constraining r-process (n,γ\gamma) reaction rates

    Get PDF
    A novel technique has been developed, which will open exciting new opportunities for studying the very neutron-rich nuclei involved in the r-process. As a proof-of-principle, the γ\gamma-spectra from the β\beta-decay of 76^{76}Ga have been measured with the SuN detector at the National Superconducting Cyclotron Laboratory. The nuclear level density and γ\gamma-ray strength function are extracted and used as input to Hauser-Feshbach calculations. The present technique is shown to strongly constrain the 75^{75}Ge(n,γn,\gamma)76^{76}Ge cross section and reaction rate.Comment: 5 pages, 3 figure

    Charged-current neutrino-208Pb reactions

    Get PDF
    We present theoretical results on the non flux-averaged 208Pb(νe,e)208Bi^{208}Pb(\nu_{e},e^-)^{208}Bi and 208Pb(νμ,μ)208Bi^{208}Pb(\nu_{\mu},\mu^-)^{208}Bi reaction cross sections, obtained within the charge-exchange Random-Phase-Approximation. A detailed knowledge of these cross sections is important in different contexts. In particular, it is necessary to assess the possibility of using lead as a detector in future experiments on supernova neutrinos, such as OMNIS and LAND, and eventually detect neutrino oscillation signals by exploiting the spectroscopic properties of 208Bi^{208}Bi. We discuss the present status on the theoretical predictions of the reaction cross sections.Comment: 5 pages, latex, 3 figures. added discussion on present status, Submitted to Phys.Rev.

    Measurement of the Gamow-Teller Strength Distribution in 58Co via the 58Ni(t,3He) reaction at 115 MeV/nucleon

    Full text link
    Electron capture and beta decay play important roles in the evolution of pre-supernovae stars and their eventual core collapse. These rates are normally predicted through shell-model calculations. Experimentally determined strength distributions from charge-exchange reactions are needed to test modern shell-model calculations. We report on the measurement of the Gamow-Teller strength distribution in 58Co from the 58Ni(t,3He) reaction with a secondary triton beam of an intensity of ~10^6 pps at 115 MeV/nucleon and a resolution of \~250 keV. Previous measurements with the 58Ni(n,p) and the 58Ni(d,2He) reactions were inconsistent with each other. Our results support the latter. We also compare the results to predictions of large-scale shell model calculations using the KB3G and GXPF1 interactions and investigate the impact of differences between the various experiments and theories in terms of the weak rates in the stellar environment. Finally, the systematic uncertainties in the normalization of the strength distribution extracted from 58Ni(3He,t) are described and turn out to be non-negligible due to large interferences between the dL=0, dS=1 Gamow-Teller amplitude and the dL=2, dS=1 amplitude.Comment: 14 pages, 8 figure

    Spectroscopy of 13B via the 13C(t,3He) reaction at 115 AMeV

    Full text link
    Gamow-Teller and dipole transitions to final states in 13B were studied via the 13C(t,3He) reaction at Et = 115 AMeV. Besides the strong Gamow-Teller transition to the 13B ground state, a weaker Gamow-Teller transition to a state at 3.6 MeV was found. This state was assigned a spin-parity of 3/2- by comparison with shell-model calculations using the WBP and WBT interactions which were modified to allow for mixing between nhw and (n+2)hw configurations. This assignment agrees with a recent result from a lifetime measurement of excited states in 13B. The shell-model calculations also explained the relatively large spectroscopic strength measured for a low-lying 1/2+ state at 4.83 MeV in 13B. The cross sections for dipole transitions up to Ex(13B)= 20 MeV excited via the 13C(t,3He) reaction were also compared with the shell-model calculations. The theoretical cross sections exceeded the data by a factor of about 1.8, which might indicate that the dipole excitations are "quenched". Uncertainties in the reaction calculations complicate that interpretation.Comment: 11 pages, 6 figure

    Two-Neutron Sequential Decay of 24^{24}O

    Full text link
    A two-neutron unbound excited state of 24^{24}O was populated through a (d,d') reaction at 83.4 MeV/nucleon. A state at E=715±110E = 715 \pm 110 (stat) ±45\pm 45 (sys) keV with a width of Γ<2\Gamma < 2 MeV was observed above the two-neutron separation energy placing it at 7.65 ±\pm 0.2 MeV with respect to the ground state. Three-body correlations for the decay of 24^{24}O \rightarrow 22^{22}O + 2n2n show clear evidence for a sequential decay through an intermediate state in 23^{23}O. Neither a di-neutron nor phase-space model for the three-body breakup were able to describe these correlations

    Gamow-Teller Strengths of the Inverse-Beta Transition 176Yb --> 176Lu for Spectroscopy of Proton-Proton and other sub-MeV Solar Neutrinos

    Full text link
    Discrete Gamow-Teller (GT) transitions, 176Yb-->176Lu at low excitation energies have been measured via the (3He,t) reaction at 450 MeV and at 0 degrees. For 176Yb, two low-lying states are observed, setting low thresholds Q(neutrino)=301 and 445 keV for neutrino capture. Capture rates estimated from the measured GT strengths, the simple two-state excitation structure, and the low Q(neutrino) in Yb--Lu indicate that Yb-based neutrino-detectors are well suited for a direct measurement of the complete sub-MeV solar electron-neutrino spectrum (including pp neutrinos) where definitive effects of flavor conversion are expected

    The 150^{150}Nd(3^3He,tt) and 150^{150}Sm(tt,3^3He) reactions with applications to ββ\beta\beta decay of 150^{150}Nd

    Full text link
    The 150^{150}Nd(3^3He,tt) reaction at 140 MeV/u and 150^{150}Sm(tt,3^3He) reaction at 115 MeV/u were measured, populating excited states in 150^{150}Pm. The transitions studied populate intermediate states of importance for the (neutrinoless) ββ\beta\beta decay of 150^{150}Nd to 150^{150}Sm. Monopole and dipole contributions to the measured excitation-energy spectra were extracted by using multipole decomposition analyses. The experimental results were compared with theoretical calculations obtained within the framework of Quasiparticle Random-Phase Approximation (QRPA), which is one of the main methods employed for estimating the half-life of the neutrinoless ββ\beta\beta decay (0νββ0\nu\beta\beta) of 150^{150}Nd. The present results thus provide useful information on the neutrino responses for evaluating the 0νββ0\nu\beta\beta and 2νββ2\nu\beta\beta matrix elements. The 2νββ2\nu\beta\beta matrix element calculated from the Gamow-Teller transitions through the lowest 1+1^{+} state in the intermediate nucleus is maximally about half of that deduced from the half-life measured in 2νββ2\nu\beta\beta direct counting experiments and at least several transitions through 1+1^{+} intermediate states in 150^{150}Pm are required to explain the 2νββ2\nu\beta\beta half-life. Because Gamow-Teller transitions in the 150^{150}Sm(tt,3^3He) experiment are strongly Pauli-blocked, the extraction of Gamow-Teller strengths was complicated by the excitation of the 2ω2\hbar\omega, ΔL=0\Delta L=0, ΔS=1\Delta S=1 isovector spin-flip giant monopole resonance (IVSGMR). However, the near absence of Gamow-Teller transition strength made it possible to cleanly identify this resonance, and the strength observed is consistent with the full exhaustion of the non-energy-weighted sum rule for the IVSGMR.Comment: 18 pages, 13 figures, 2 table

    Beta-delayed proton emission in the 100Sn region

    Full text link
    Beta-delayed proton emission from nuclides in the neighborhood of 100Sn was studied at the National Superconducting Cyclotron Laboratory. The nuclei were produced by fragmentation of a 120 MeV/nucleon 112Sn primary beam on a Be target. Beam purification was provided by the A1900 Fragment Separator and the Radio Frequency Fragment Separator. The fragments of interest were identified and their decay was studied with the NSCL Beta Counting System (BCS) in conjunction with the Segmented Germanium Array (SeGA). The nuclei 96Cd, 98Ing, 98Inm and 99In were identified as beta-delayed proton emitters, with branching ratios bp = 5.5(40)%, 5.5+3 -2%, 19(2)% and 0.9(4)%, respectively. The bp for 89Ru, 91,92Rh, 93Pd and 95Ag were deduced for the first time with bp = 3+1.9 -1.7%, 1.3(5)%, 1.9(1)%, 7.5(5)% and 2.5(3)%, respectively. The bp = 22(1)% for 101Sn was deduced with higher precision than previously reported. The impact of the newly measured bp values on the composition of the type-I X-ray burst ashes was studied.Comment: 15 pages, 14 Figures, 4 Table
    corecore