62 research outputs found

    Use of thermal signal for the investigation of near-surface turbulence

    Get PDF
    Organised motion of air in the roughness sublayer of the atmosphere was investigated using novel temperature sensing and data science methods. Despite accuracy drawbacks, current fibre-optic distributed temperature sensing (DTS) and thermal imaging (TIR) instruments offer frequent, moderately precise and highly localised observations of thermal signal in a domain geometry suitable for micrometeorological applications near the surface. The goal of this study was to combine DTS and TIR for the investigation of temperature and wind field statistics. Horizontal and vertical cross-sections allowed a tomographic investigation of the spanwise and streamwise evolution of organised motion, opening avenues for analysis without assumptions on scale relationships. Events in the temperature signal on the order of seconds to minutes could be identified, localised, and classified using signal decomposition and machine learning techniques. However, small-scale turbulence patterns at the surface appeared difficult to resolve due to the heterogeneity of the thermal properties of the vegetation canopy, which are not immediately evident visually. The results highlight a need for physics-aware data science techniques that treat scale and shape of temperature structures in combination, rather than as separate features

    Eddy-Covariance Flux Measurements in the Complex Terrain of an Alpine Valley in Switzerland

    Get PDF
    We measured the surface energy budget of an Alpine grassland in highly complex terrain to explore possibilities and limitations for application of the eddy-covariance technique, also for CO2 flux measurements, at such non-ideal locations. This paper focuses on the influence of complex terrain on the turbulent energy measurements of a characteristic high Alpine grassland on Crap Alv (Alp Weissenstein) in the Swiss Alps during the growing season 2006. Measurements were carried out on a topographic terrace with a slope of 25◦ inclination. Flux data quality is assessed via the closure of the energy budget and the quality flag method used within the CarboEurope project. During 93% of the time the wind direction was along the main valley axis (43% upvalley and 50% downvalley directions). During the transition times of the typical twice daily wind direction changes in a mountain valley the fraction of high and good quality flux data reached a minimum of ≈50%, whereas during the early afternoon ≈70% of all records yielded good to highest quality (CarboEurope flags 0 and 1). The overall energy budget closure was 74±2%. An angular correction for the shortwave energy input to the slope improved the energy budget closure slightly to 82±2% for afternoon conditions. In the daily total, the measured turbulent energy fluxes are only underestimated by around 8% of net radiation. In summary, our results suggest that it is possible to yield realistic energy flux measurements under such conditions. We thus argue that the Crap Alv site and similar topographically complex locations with short-statured vegetation should be well suited also for CO2 flux measurement

    Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale

    Get PDF
    In order to estimate the air-surface mercury exchange of grasslands in temperate climate regions, fluxes of gaseous elemental mercury (GEM) were measured at two sites in Switzerland and one in Austria during summer 2006. Two classic micrometeorological methods (aerodynamic and modified Bowen ratio) have been applied to estimate net GEM exchange rates and to determine the response of the GEM flux to changes in environmental conditions (e. g. heavy rain, summer ozone) on an ecosystem-scale. Both methods proved to be appropriate to estimate fluxes on time scales of a few hours and longer. Average dry deposition rates up to 4.3 ng m(-2) h(-1) and mean deposition velocities up to 0.10 cm s(-1) were measured, which indicates that during the active vegetation period temperate grasslands are a small net sink for atmospheric mercury. With increasing ozone concentrations depletion of GEM was observed, but could not be quantified from the flux signal. Night-time deposition fluxes of GEM were measured and seem to be the result of mercury co-deposition with condensing water. Effects of grass cuts could also be observed, but were of minor magnitude

    Wintertime grassland dynamics may influence belowground biomass under climate change: a model analysis

    Get PDF
    Rising temperatures and changes in snow cover, as can be expected under a warmer global climate, may have large impacts on mountain grassland productivity limited by cold and long winters. Here, we combined two existing models, the multi-layer atmosphere-SOiL-VEGetation model (SOLVEG) and the BASic GRAssland model (BASGRA), which accounts for snow, freeze–thaw events, grass growth, and soil carbon balance. The model was applied to simulate the responses of managed grasslands to anomalously warm winter conditions. The grass growth module considered key ecological processes under a cold environment, such as leaf formation, elongation and death, tillering, carbon allocation, and cold acclimation, in terms of photosynthetic activity. Input parameters were derived for two pre-Alpine grassland sites in Germany, for which the model was run using 3 years of data that included a winter with an exceptionally small amount of snow. The model reproduced the temporal variability of observed daily mean heat fluxes, soil temperatures, and snow depth throughout the study period. High physiological activity levels during the extremely warm winter led to a simulated CO2 uptake of 100 gC m−2, which was mainly allocated into the belowground biomass and only to a minor extent used for additional plant growth during early spring. If these temporary dynamics are representative of long-term changes, this process, which is so far largely unaccounted for in scenario analysis using global terrestrial biosphere models, may lead to carbon accumulation in the soil and/or carbon loss from the soil as a response to global warming

    Field intercomparison of prevailing sonic anemometers

    Get PDF
    Three-dimensional sonic anemometers are the core component of eddy covariance systems, which are widely used for micrometeorological and ecological research. In order to characterize the measurement uncertainty of these instruments we present and analyse the results from a field intercomparison experiment of six commonly used sonic anemometer models from four major manufacturers. These models include Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R. M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site DE-Fen in southern Germany over a period of 16 days in June of 2016 as part of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by adjacent structures as much as possible. Moreover, the high-frequency data from all instruments were treated with the same post-processing algorithm. In this study, we compare the results for various turbulence statistics, which include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity, and the buoyancy flux. Quantitative measures of uncertainty, such as bias and comparability, are derived from these results. We find that biases are generally very small for all sensors and all computed variables, except for the sonic temperature measurements of the two Gill sonic anemometers (HS and R3), confirming a known transducer-temperature dependence of the sonic temperature measurement. The best overall agreement between the different instruments was found for the mean wind speed and the buoyancy flux

    Impacts of fertilization on grassland productivity and water quality across the European Alps under current and warming climate: Insights from a mechanistic model

    Get PDF
    Alpine grasslands sustain local economy by providing fodder for livestock. Intensive fertilization is common to enhance their yields, thus creating negative externalities on water quality that are difficult to evaluate without reliable estimates of nutrient fluxes. We apply a mechanistic ecosystem model, seamlessly integrating land-surface energy balance, soil hydrology, vegetation dynamics, and soil biogeochemistry, aiming at assessing the grassland response to fertilization. We simulate the major water, carbon, nutrient, and energy fluxes of nine grassland plots across the broad European Alpine region. We provide an interdisciplinary model evaluation by confirming its performance against observed variables from different datasets. Subsequently, we apply the model to test the influence of fertilization practices on grassland yields and nitrate (NO3_{3}^{-}) losses through leaching under both current and modified climate scenarios. Despite the generally low NO3_{3}^{-} concentration in groundwater recharge, the variability across sites is remarkable, which is mostly (but not exclusively) dictated by elevation. In high-Alpine sites, short growing seasons lead to less efficient nitrogen (N) uptake for biomass production. This combined with lower evapotranspiration rates results in higher amounts of drainage and NO3_{3}^{-} leaching to groundwater. Scenarios with increased temperature lead to a longer growing season characterized by higher biomass production and, consequently, to a reduction of water leakage and N leaching. While the intersite variability is maintained, climate change impacts are stronger on sites at higher elevations. The local soil hydrology has a crucial role in driving the NO3_{3}^{-} use efficiency. The commonly applied fixed threshold limit on fertilizer N input is suboptimal. We suggest that major hydrological and soil property differences across sites should be considered in the delineation of best practices or regulations for management. Using distributed maps informed with key soil and climatic attributes or systematically implementing integrated ecosystem models as shown here can contribute to achieving more sustainable practices

    Large inter-annual variation in carbon sink strength of a permanent grassland over 16 years: Impacts of management practices and climate

    Get PDF
    Permanent grasslands cover one third of the European agricultural area and are known to store large amounts of carbon (C) in their soils. However, long-term assessments of their C sink strength are still scarce. Thus, we investigated the C budget of an intensively managed, permanent grassland in Switzerland over 16 years, compared the results to changes in soil C stocks, and determined the most important drivers of the net ecosystem CO2 exchange (NEE). Combining NEE fluxes with C imports and C exports, we quantified the grassland C budget, i.e., net biome production (NBP). We observed a large inter-annual variation in NBP, with 9 of the 16 years indicating a C sink, and 7 years indicating a C source. On average, the grassland was a small C sink to C neutral, with a NBP of -70±106 g C m2^{−2} yr1^{−1} (mean±95% confidence interval). Mean NEE fluxes were -284±115 g C m2^{−2} yr1^{−1}, C exports via harvest 335±73 g C m2^{−2} yr1^{−1}, and organic C imports via slurry -121±43 g C m2^{−2} yr1^{−1}. Soil C stocks from 0 to 0.7 m did not change significantly (decrease of 27.5 g C m2^{−2} yr1^{−1} over 13 years). Inter-annual variation in NBP was affected by management practices and environmental conditions. In the last five years, NBP was positive (C source), most likely due to decreasing C imports in combination with extreme weather conditions. Our study demonstrated the importance of covering multiple years with different management events when assessing the C sink strength of a site. Maintaining even a small grassland C sink in the future will be challenging and will require continuous organic C imports
    corecore