26 research outputs found

    Thickness uniformity measurements and damage threshold tests of large-area GaAs/AlGaAs crystalline coatings for precision interferometry

    Get PDF
    Precision interferometry is the leading method for extremely sensitive measurements in gravitational wave astronomy. Thermal noise of dielectric coatings poses a limitation to the sensitivity of these interferometers. To decrease coating thermal noise, new crystalline GaAs/AlGaAs multilayer mirrors have been developed. To date, the surface figure and thickness uniformity of these alternative low-loss coatings has not been investigated. Surface figure errors, for example, cause small angle scattering and thereby limit the sensitivity of an interferometer. Here we measure the surface figure of highly reflective, substrate-transferred, crystalline GaAs/AlGaAs coatings with a custom scanning reflectance system. We exploit the fact that the reflectivity varies with the thickness of the coating. To increase penetration into the coating, we used a 1550 nm laser on a highly reflective coating designed for a center wavelength of 1064 nm. The RMS thickness variation of a two inch optic was measured to be 0.41 ± 0.05 nm. This result is within 10% of the thickness uniformity, of 0.37 nm RMS, achieved with ion-beam sputtered coatings for the aLIGO detector. We additionally measured a lower limit of the laser induced damage threshold of 64 MW/cm2 for GaAs/AlGaAs coatings at a wavelength of 1064 nm. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Characterization of Large-Area Crystalline Coatings for Next-Generation Gravitational Wave Detectors

    No full text
    Through in-depth optical characterization including thickness uniformity and optical scatter measurements, we demonstrate that large-area crystalline coatings are a promising alternative to ion-beam sputtered multilayers for low-noise mirrors employed in next-generation gravitational wave detectors

    Quantum cascade detector at 4.3µm wavelength in pixel array configuration

    No full text
    Mid-infrared detection with semiconductor based pixel arrays attracted constant research interest over the past years. Remaining challenges for intersubband detectors are high device performance at elevated temperatures in combination with cost effective scalability to large pixel counts needed for applications in remote sensing and high resolution infrared imaging. In this field, quantum cascade detectors may offer promising advantages such as photovoltaic room temperature operation at a designable operation wavelength with compatibility to stable material systems and growth technology. We present a high performance InGaAs/InAlAs quantum cascade detector design suitable for pixel devices. The design is based on a vertical optical transition and resonant tunneling extraction. The 20 period active region is optimized for a high device resistance and thereby high detectivity up to room temperature. The pixels are fully compatible with standard processing technology and material growth to provide scalability to large pixel counts. An enhanced quantum cascade detector simulator is used for design optimization of the resistance and extraction efficiency while maintaining state of the art responsivity. The device is thermo-compression bonded to a custom read out integrated circuit with substrate bottom side illuminated pixels utilizing a metal grating coupling scheme. The operation wavelength is designed to align with the strong CO2 absorption around 4.3µm. A room temperature responsivity of 16mA/W and a detectivity of 5∙107 cm√Hz/W was achieved in good agreement with our simulation results. Device packaging and thermo-electric cooling in an N2 purged 16 pin TO-8 housing has been investigated

    Redefinition of Peridinium lomnickii Wołoszynska (Dinophyta) by scanning electronmicroscopical survey

    No full text
    Peridinium lomnickii Woloszynska was investigated by scanning electron microscopy with special attention to the importance of development of thecal plate during the life cycle. Different life cycle stages (gymnodinoid-, glenodinoid-, peridinioid) are described on the basis of development of cell wall, presence and development of sutures, appearance of pore and the change of the cell shape. Differences and possible relationships between the three existing varieties of the species are discussed. We suggest that the three varieties of P. lomnickii, P. lomnickii var. lomnickii, P. lomnickii var. wierzejskii and P. lomnickii var. splendida, represent the different life cycle stages of the species. These results and the known ontogenic cycle of dinophyta taxa should be taken into consideration, when a phylogenic tree of the dinophytes is constructed
    corecore