347 research outputs found

    Medium‐grade proteinuria is a risk factor for incident markers of chronic kidney disease

    Get PDF
    Objective Medium‐grade proteinuria (100–500 mg/g creatinine) is common among people living with HIV/AIDS (PLWHA) but is often undetected or ignored. This prospective, observational cohort study examined medium‐grade proteinuria as a risk factor for markers of chronic kidney disease (CKD). Methods Quantitative urine samples were collected from 241 PLWHA without known renal disease at baseline between January 2009 and February 2011 and at follow‐up 240 weeks later. Multivariate analysis was performed to assess medium‐grade proteinuria as a risk factor for incident markers of CKD (estimated glomerular filtration rate < 60 mL/min/1.73 m2, albuminuria, phosphaturia). Results Incident markers of CKD were identified in 33 patients (14%), of whom 24 (74%) had medium‐grade proteinuria at baseline. Of these, 22 even had proteinuria of < 200 mg/g creatinine. Multivariate analysis showed an adjusted relative risk (aRR) of 2.4 for patients with baseline medium‐grade proteinuria to develop signs of CKD. Age was identified as an additional independent predictor. By testing for interaction, tenofovir disoproxil fumarate (TDF)‐independent proteinuria was strongly associated with incident CKD markers (aRR = 12.1). Conclusion Medium‐grade proteinuria of 100–500 mg/g creatinine is both frequent in PLWHA and a significant risk factor for developing markers of CKD, especially in the absence of TDF. Relevant risk seems to be associated with proteinuria levels as low as 100–200 mg/g creatinine. Current guidelines recommend specific action for proteinuria exceeding 135–200 mg/g but still will miss a relevant number of PLWHA potentially at risk for CKD. An even lower cut‐off to trigger nephrological work‐up and potentially renoprotective interventions appears to be indicated

    Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions

    Get PDF
    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences

    Modeling resilience and sustainability in ancient agricultural systems

    Get PDF
    The reasons why people adopt unsustainable agricultural practices, and the ultimate environmental implications of those practices, remain incompletely understood in the present world. Archaeology, however, offers unique datasets on coincident cultural and ecological change, and their social and environmental effects. This article applies concepts derived from ecological resilience thinking to assess the sustainability of agricultural practices as a result of long-term interactions between political, economic, and environmental systems. Using the urban center of Gordion, in central Turkey, as a case study, it is possible to identify mismatched social and ecological processes on temporal, spatial, and organizational scales, which help to resolve thresholds of resilience. Results of this analysis implicate temporal and spatial mismatches as a cause for local environmental degradation, and increasing extralocal economic pressures as an ultimate cause for the adoption of unsustainable land-use practices. This analysis suggests that a research approach that integrates environmental archaeology with a resilience perspective has considerable potential for explicating regional patterns of agricultural change and environmental degradation in the past

    A new system for computing dentition-based age profiles in Sus scrofa

    Get PDF
    a b s t r a c t Reconstructing demographic profiles is valuable for revealing animal exploitation strategies at archaeological sites. For pig (Sus scrofa), the method presented by The study presented here is part of ongoing research aimed at developing new methods for the construction of S. scrofa demographic profiles based on both dentition and long bone fusion. In this paper, we present the results of a study of eruption and wear patterns in a large modern assemblage of wild boar which provides the basis for a new method for constructing pig harvest profiles and addresses some of the most serious limitations of Grant&apos;s earlier study. The utility of this method in detecting subtle differences in pig prey/harvest profiles is demonstrated through its application to three Near Eastern archaeological assemblages from three distinct time periods: Bronze Age Tell Leilan, Halafian Banahilk, and Epipaleolithic Hallan Çemi, where residents likely employed widely different pig exploitation strategies. The results of these case studies demonstrate the ability of this method to reliably reconstruct age demography and distinguish age profiles between sites with different animal procurement strategies. This method provides a standardized means of collecting accurate and reliable age data crucial in examining patterns of past pig exploitation

    Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe

    Get PDF
    Acknowledgements We thank the Archaeological State Museum Schleswig-Holstein, the Archaeological State Offices of Brandenburg, Lower Saxony and Saxony and the following individuals who provided sample material: Betty Arndt, Jo¹rg Ewersen, Frederick Feulner, Susanne Hanik, Ru¹diger Krause, Jochen Reinhard, Uwe Reuter, Karl-Heinz Ro¹hrig, Maguerita Scha¹fer, Jo¹rg Schibler, Reinhold Schoon, Regina Smolnik, Thomas Terberger and Ingrid Ulbricht. We are grateful to Ulrich Schmo¹lcke, Michael Forster, Peter Forster and Aikaterini Glykou for their support and comments on the manuscript. We also thank many institutions and individuals that provided sample material and access to collections, especially the curators of the Museum fu¹r Naturkunde, Berlin; Muse®um National d0 Histoire Naturelle, Paris; Smithsonian Institution, National Museum of Natural History, Washington D.C.; Zoologische Staatssammlung, Mu¹nchen; Museum fu¹r Haustierkunde, Halle; the American Museum of Natural History, New-York. This work was funded by the Graduate School ‘Human Development in Landscapes’ at Kiel University (CAU) and supported by NERC project Grant NE/F003382/1. Radiocarbon dating was carried out at the Leibniz Laboratory, CAU. This work is licensed under a Creative Commons AttributionNonCommercial-NoDerivs 3.0 Unported License.Peer reviewedPublisher PD

    Approaching ancient disease from a One Health perspective: Interdisciplinary review for the investigation of zoonotic brucellosis

    Get PDF
    Today, brucellosis is the most common global bacterial zoonosis, bringing with it a range of significant health and economic consequences, yet it is rarely identified from the archaeological record. Detection and understanding of past zoonoses could be improved by triangulating evidence and proxies generated through different approaches. The complex socio‐ecological systems that support zoonoses involve humans, animals, and pathogens interacting within specific environmental and cultural contexts, and as such there is a diversity of potential datasets that can be targeted. To capture this, in this paper we consider how to approach the study of zoonotic brucellosis in the past from a One Health perspective, one which explicitly acknowledges the health link between people, animals and environments (both physical and cultural). One Health research is explicitly interdisciplinary and conceptually moves away from an anthropocentric approach, allowing the component parts to be considered in holistic and integrated ways to deliver more comprehensive understanding. To this end, in this paper we review the methods, selected evidence and potential for past brucellosis identification and understanding, focussing on osteological markers in humans and animals, historical, biomolecular and epidemiological approaches. We also present an agenda and potential for future research

    A morphometric system to distinguish sheep and goat postcranial bones.

    Get PDF
    Distinguishing between the bones of sheep and goat is a notorious challenge in zooarchaeology. Several methodological contributions have been published at different times and by various people to facilitate this task, largely relying on a macro-morphological approach. This is now routinely adopted by zooarchaeologists but, although it certainly has its value, has also been shown to have limitations. Morphological discriminant criteria can vary in different populations and correct identification is highly dependent upon a researcher's experience, availability of appropriate reference collections, and many other factors that are difficult to quantify. There is therefore a need to establish a more objective system, susceptible to scrutiny. In order to fulfil such a requirement, this paper offers a comprehensive morphometric method for the identification of sheep and goat postcranial bones, using a sample of more than 150 modern skeletons as a basis, and building on previous pioneering work. The proposed method is based on measurements-some newly created, others previously published-and its use is recommended in combination with the more traditional morphological approach. Measurement ratios, used to translate morphological traits into biometrical attributes, are demonstrated to have substantial diagnostic potential, with the vast majority of specimens correctly assigned to species. The efficacy of the new method is also tested with Discriminant Analysis, which provides a successful verification of the biometrical indices, a statistical means to select the most promising measurements, and an additional line of analysis to be used in conjunction with the others

    A morphometric system to distinguish sheep and goat postcranial bones.

    Get PDF
    Distinguishing between the bones of sheep and goat is a notorious challenge in zooarchaeology. Several methodological contributions have been published at different times and by various people to facilitate this task, largely relying on a macro-morphological approach. This is now routinely adopted by zooarchaeologists but, although it certainly has its value, has also been shown to have limitations. Morphological discriminant criteria can vary in different populations and correct identification is highly dependent upon a researcher's experience, availability of appropriate reference collections, and many other factors that are difficult to quantify. There is therefore a need to establish a more objective system, susceptible to scrutiny. In order to fulfil such a requirement, this paper offers a comprehensive morphometric method for the identification of sheep and goat postcranial bones, using a sample of more than 150 modern skeletons as a basis, and building on previous pioneering work. The proposed method is based on measurements-some newly created, others previously published-and its use is recommended in combination with the more traditional morphological approach. Measurement ratios, used to translate morphological traits into biometrical attributes, are demonstrated to have substantial diagnostic potential, with the vast majority of specimens correctly assigned to species. The efficacy of the new method is also tested with Discriminant Analysis, which provides a successful verification of the biometrical indices, a statistical means to select the most promising measurements, and an additional line of analysis to be used in conjunction with the others

    Large-Scale Mitochondrial DNA Analysis of the Domestic Goat Reveals Six Haplogroups with High Diversity

    Get PDF
    Background. From the beginning of domestication, the transportation of domestic animals resulted in genetic and demographic processes that explain their present distribution and genetic structure. Thus studying the present genetic diversity helps to better understand the history of domestic species. Methodology/Principal Findings. The genetic diversity of domestic goats has been characterized with 2430 individuals from all over the old world, including 946 new individuals from regions poorly studied until now (mainly the Fertile Crescent). These individuals represented 1540 haplotypes for the HVI segment of the mitochondrial DNA (mtDNA) control region. This large-scale study allowed the establishment of a clear nomenclature of the goat maternal haplogroups. Only five of the six previously defined groups of haplotypes were divergent enough to be considered as different haplogroups. Moreover a new mitochondrial group has been localized around the Fertile Crescent. All groups showed very high haplotype diversity. Most of this diversity was distributed among groups and within geographic regions. The weak geographic structure may result from the worldwide distribution of the dominant A haplogroup (more than 90% of the individuals). The large-scale distribution of other haplogroups (except one), may be related to human migration. The recent fragmentation of local goat populations into discrete breeds is not detectable with mitochondrial markers. The estimation of demographic parameters from mismatch analyses showed that all groups had a recent demographic expansion corresponding roughly to the period when domestication took place. But even with a large data set it remains difficult to give relative dates of expansion for different haplogroups because of large confidence intervals. Conclusions/Significance. We propose standard criteria for the definition of the different haplogroups based on the result of mismatch analysis and on the use of sequences of reference. Such a method could be also applied for clarifying the nomenclature of mitochondrial haplogroups in other domestic species

    Genome-Wide Analysis of the World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection

    Get PDF
    Genomic structure in a global collection of domesticated sheep reveals a history of artificial selection for horn loss and traits relating to pigmentation, reproduction, and body size
    • 

    corecore