295 research outputs found

    Aromatase immunoreactivity in fetal ovine neuronal cell cultures exposed to oxidative injury

    Get PDF
    A lot of evidence testifies that aromatase is expressed in the central nervous system where it has been detected not only in hypothalamic and limbic regions but also in the cerebral cortex and spinal cord. In physiological conditions, aromatase is expressed exclusively by neurons, where it has been mainly found in cell bodies, processes and synaptic terminals. Moreover, primary cultured cortical astrocytes from female rats are more resistant to oxidant cell death than those from males, suggesting a protective role of estradiol. The aim of this study was to evaluate changes in aromatase expression in response to 3-nitro-L-tyrosine, a marker of oxidative stress, in primary neuronal cell cultures from brains of 60-day old sheep fetuses. Cells were identified as neurons by using class III ÎČ-tubulin, a marker of neuronal cells. Two morphological types were consistently recognizable: i) bipolar cells with an oval cell body; ii) multipolar cells whose processes formed a wide net with those of adjacent cells. In situ hybridization technique performed on 60-day old fetal neurons revealed that in baseline conditions aromatase gene expression occurs. Importantly, cells exposed to 360 ”M 3-nitro-L-tyrosine were fewer and showed more globular shape and shorter cytoplasmic processes in comparison to control cells. The immunocytochemical study with anti-aromatase antibody revealed that cells exposed to 360 ”M 3-nitro-L-tyrosine were significantly more immunoreactive than control cells. Thus, it can be postulated that the oxidant effects of the amino acid analogue 3-nitro-L-tyrosine could be counterbalanced by an increase in aromatase expression that in turn can lead to the formation of neuroprotective estradiol via aromatization of testosterone

    RFID technology for blood tracking: An experimental approach for benchmarking different devices

    Get PDF
    OBJECTIVE: The objective of the paper is to design a testing protocol to measure performances of RFID devices applied to blood supply chain, and to implement an experimental campaign in order to collect performance data. The protocol matches operational conditions in blood supply chain and is particularly tailored to some critical processes, which can benefit from RFID adoption. The paper thus strives at benchmarking performances of inlays, fixed and handheld RFID readers, when deployed in the blood supply chain processes. DESIGN, METHODOLOGY, APPROACH: The adopted testing protocol enables the assessment of performances of RFID devices in processes of the blood supply chain, since it has been developed peculiarly to emulate critical logistics processes. The testing protocol has been designed jointly with hospital personnel involved in every day operations on blood bags and tubes in order to improve processes, in terms of safety and reliability. The testing protocol has been applied to 3 inlays, 2 fixed readers, 1 mobile handheld in 3 logistics processes, all operating according to UHF EPC class 1 gen 2 protocols and ETSI regulations. We measured and compared read rates, accuracies and read times. FINDINGS: The results of the test give a direct insight of performances to be expected from different RFID devices when deployed in a real-world environment. Therefore, it is possible to give answers to how a specific piece of hardware - such as an inlay or a reader - performs, and how it can be effectively used to improve security of patients in healthcare. At the same time, researchers focusing on the business process reengineering of blood supply chain can assess the technical feasibility of the RFID-reengineered logistics processes in order to improve the safety of end users

    Dynamic surface electromyography using stretchable screen-printed textile electrodes

    Get PDF
    Objective. Wearable devices have created new opportunities in healthcare and sport sciences by unobtrusively monitoring physiological signals. Textile polymer-based electrodes proved to be effective in detecting electrophysiological potentials but suffer mechanical fragility and low stretch resistance. The goal of this research is to develop and validate in dynamic conditions cost-effective and easily manufacturable electrodes characterized by adequate robustness and signal quality. Methods. We here propose an optimized screen printing technique for the fabrication of PEDOT:PSS-based textile electrodes directly into finished stretchable garments for surface electromyography (sEMG) applications. A sensorised stretchable leg sleeve was developed, targeting five muscles of interest in rehabilitation and sport science. An experimental validation was performed to assess the accuracy of signal detection during dynamic exercises, including sit-to-stand, leg extension, calf raise, walking, and cycling. Results. The electrodes can resist up to 500 stretch cycles. Tests on five subjects revealed excellent contact impedance, and cross-correlation between sEMG envelopes simultaneously detected from the leg muscles by the textile and Ag/AgCl electrodes was generally greater than 0.9, which proves that it is possible to obtain good quality signals with performance comparable with disposable electrodes. Conclusions. An effective technique to embed polymer-based electrodes in stretchable smart garments was presented, revealing good performance for dynamic sEMG detections. Significance. The achieved results pave the way to the integration of unobtrusive electrodes, obtained by screen printing of conductive polymers, into technical fabrics for rehabilitation and sport monitoring, and in general where the detection of sEMG in dynamic conditions is necessary

    Balanced metrics on Cartan and Cartan-Hartogs domains

    Get PDF
    This paper consists of two results dealing with balanced metrics (in S. Donaldson terminology) on nonconpact complex manifolds. In the first one we describe all balanced metrics on Cartan domains. In the second one we show that the only Cartan-Hartogs domain which admits a balanced metric is the complex hyperbolic space. By combining these results with those obtained in [13] (Kaehler-Einstein submanifolds of the infinite dimensional projective space, to appear in Mathematische Annalen) we also provide the first example of complete, Kaehler-Einstein and projectively induced metric g such that αg\alpha g is not balanced for all α>0\alpha >0.Comment: 11 page

    Effects of industrial processing on pesticide multiresidues transfer from raw tomatoes to processed products

    Get PDF
    Pesticides are broadly used to improve food safety, although they can lead to adverse health effects on consumers. Various food processing approaches, at the industrial or domestic level, have been found to highly reduce the amount of pesticide residues in most food materials. In this work, samples of raw tomatoes were collected directly from the field and processed at the industrial level to produce purĂ©e, triple concentrated paste, fine pulp, and diced tomatoes. A multiresidue method based on a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged e Safe) sample preparation, followed by liquid chromatography‐tandem mass spectrometry analysis (LC‐MS/MS) for the assessment of 116 pesticides residues, was used. The analytical method has been validated according to SANTE indications. The recovery yields ranged from 75.5% to 115.3%, repeatability (RSDr) ranged from 3.4% to 18.3%, while reproducibility (RSDwR) ranged from 5.4% to 19.8%. The limit of quantifications (LOQs) ranged from 2.35 ÎŒg kg−1 for benthiavalicarb to 6.49 ÎŒg kg−1 for allethrin. A total of 159 raw tomato samples were collected from the field. The analysis showed the presence of 46 pesticides with azoxystrobin and chlorantraniliprole the most represented. On the other hand, all industrially processed samples showed values ≀ LOD, confirming that post‐harvest processes can lead to a decrease in pesticide residues from agricultural commodities

    Androgen receptor immunoreactivity in rat occipital cortex after callosotomy

    Get PDF
    Gonadal steroidogenesis can be influenced by direct neural links between the central nervous system and the gonads. It is known that androgen receptor (AR) is expressed in many areas of the rat brain involved in neuroendocrine control of reproduction, such as the cerebral cortex. It has been recently shown that the occipital cortex exerts an inhibitory effect on testicular stereoidogenesis by a pituitary-independent neural mechanism. Moreover, the complete transection of the corpus callosum leads to an increase in testosterone (T) secretion of hemigonadectomized rats. The present study was undertaken to analyze the possible corticocortical influences regulating male reproductive activities. Adult male Wistar rats were divided into 4 groups: 1) intact animals as control; 2) rats undergoing sham callosotomy; 3) posterior callosotomy; 4) gonadectomy and posterior callosotomy. Western blot analysis showed no remarkable variations in cortical AR expression in any of the groups except in group I where a significant decrease in AR levels was found. Similarly, both immunocytochemical study and cell count estimation showed a lower AR immunoreactivity in occipital cortex of callosotomized rats than in other groups. In addition, there was no difference in serum T and LH concentration between sham-callosotomized and callosotomized rats. In conclusion, our results show that posterior callosotomy led to a reduction in AR in the right occipital cortex suggesting a putative inhibiting effect of the contralateral cortical area

    Integrating demand uncertainty in inventory routing for recyclable waste collection

    Get PDF
    Osteoblast cell adhesion to the extracellular matrix is established through two main pathways: one is mediated by the binding between integrin and a minimal adhesion sequence (RGD) on the extracellular protein, the other is based on the interactions between transmembrane proteoglycans and heparin-binding sequences found in many matrix proteins. The aim of this study is the evaluation in an in vivo endosseous implant model of the early osteogenic response of the peri-implant bone to a biomimetic titanium surface functionalized with the retro-inverso 2DHVP peptide, an analogue of Vitronectin heparin binding site. The experimental plan is based on a bilateral study design of Control and 2DHVP implants inserted respectively in the right and left femur distal metaphysis of adult male Wistar rats (n=16) weighing about 300 gr and evaluated after 15 days. Fluorochromic bone vital markers, were given at specific time frame, in order to monitor the dynamic of new bone deposition. The effect inducted by the peptidomimetic coating on the surrounding bone were qualitatively and quantitatively evaluated by means of static and dynamic histomorphometric analyses performed within three concentric and subsequent circular Regions of Interest (ROI) of equivalent thickness (220 ÎŒm), ROI1 adjacent to the interface, ROI2, the middle, and ROI3 the farthest. The data indicated that these functionalized implants stimulated a higher bone apposition rate (p<0,01) and larger and rapid osteoblast activation in terms of mineralising surface within ROI1 compared to the Control (p<0,01). These higher osteoblast recruitment and activation leads to a greater bone to implant contact reached for DHVP samples (p<0,5). This represents an initial stimulus of the osteogenic activity that might results in a faster and better osteointegration process
    • 

    corecore