633 research outputs found

    Solar cell emitter design with PV-tailored implantation

    Get PDF
    A potentially cost-effective ion implanter for solar cells has become commercially available very recently. As the emitter dopant profiles differ from the standard diffusions, a combination of process simulation and device simulation is used to predict possible applications as front emitter. The simulations show that ion energies of 10 to 30 keV and doses in the range of 5Ɨ1014 to 7Ɨ1015 cm-2 are sufficient for reducing the phosphorus peak density and, hence, obtaining cell efficiency levels above 20%, if appropriate surface passivation and wafer materials are used. The simulations strongly indicate, however, that cell efficiency improves only marginally if the cell has a fully metallized rear Al-BSF and a boron-doped Cz base in the degraded state. Simulated cells with a local rear Al-BSF show an efficiency improvement of more than 0.3% absolute in the degraded state

    Inbreeding, Microsatellite Heterozygosity, and Morphological Traits in Lipizzan Horses

    Get PDF
    While the negative effects of inbreeding and reduced heterozygosity on fecundity and survival are well established, only a few investigations have been carried out concerning their influence on morphological traits. This topic is of particular interest for a small and closed population such as the Lipizzan horse. Thus, 27 morphological traits were measured in 360 Lipizzan mares and were regressed on the individual inbreeding coefficients, as well as on the individual heterozygosity and mean squared distances (mean d2) between microsatellite alleles within an individual. Both individual heterozygosity and mean d2 were based on 17 microsatellite loci dispersed over 14 chromosomes. The results obtained by multivariate analysis reveal significant effects of stud (P <.0001), age at measurement (P <.0001), and mean d2 (P =.0143). In univariate analyses, significant associations were obtained between length of pastern-hindlimbs and inbreeding coefficient (P <.01), length of cannons-hindlimb and mean d2 (P <.01), and length of neck and mean d2 (P <.001). After adjustment of single-test P values for multiple tests (Hochberg's step-up Bonferroni method), only the association of the length of neck and mean d2 remained significant (P =.0213). Thus, no overall large effects of inbreeding, microsatellite heterozygosity, and mean d2 on morphological traits were observed in the Lipizzan hors

    Inbreeding, Microsatellite Heterozygosity, and Morphological Traits in Lipizzan Horses

    Get PDF
    While the negative effects of inbreeding and reduced heterozygosity on fecundity and survival are well established, only a few investigations have been carried out concerning their influence on morphological traits. This topic is of particular interest for a small and closed population such as the Lipizzan horse. Thus, 27 morphological traits were measured in 360 Lipizzan mares and were regressed on the individual inbreeding coefficients, as well as on the individual heterozygosity and mean squared distances (mean d2) between microsatellite alleles within an individual. Both individual heterozygosity and mean d2 were based on 17 microsatellite loci dispersed over 14 chromosomes. The results obtained by multivariate analysis reveal significant effects of stud (P <.0001), age at measurement (P <.0001), and mean d2 (P =.0143). In univariate analyses, significant associations were obtained between length of pastern-hindlimbs and inbreeding coefficient (P <.01), length of cannons-hindlimb and mean d2 (P <.01), and length of neck and mean d2 (P <.001). After adjustment of single-test P values for multiple tests (Hochberg's step-up Bonferroni method), only the association of the length of neck and mean d2 remained significant (P =.0213). Thus, no overall large effects of inbreeding, microsatellite heterozygosity, and mean d2 on morphological traits were observed in the Lipizzan horse

    High-Level Expression of Various Apolipoprotein (a) Isoforms by "Transferrinfection". The Role of Kringle IV Sequences in the Extracellular Association with Low-Density Lipoprotein

    Get PDF
    Characterization of the assembly of lipoprotein(a) [Lp(a)] is of fundamental importance to understanding the biosynthesis and metabolism of this atherogenic lipoprotein. Since no established cell lines exist that express Lp(a) or apolipoprotein(a) [apo(a)], a "transferrinfection" system for apo(a) was developed utilizing adenovirus receptor- and transferrin receptor-mediated DNA uptake into cells. Using this method, different apo(a) cDNA constructions of variable length, due to the presence of 3, 5, 7, 9, 15, or 18 internal kringle IV sequences, were expressed in cos-7 cells or CHO cells. All constructions contained kringle IV-36, which includes the only unpaired cysteine residue (Cys-4057) in apo(a). r-Apo(a) was synthesized as a precursor and secreted as mature apolipoprotein into the medium. When medium containing r-apo(a) with 9, 15, or 18 kringle IV repeats was mixed with normal human plasma LDL, stable complexes formed that had a bouyant density typical of Lp(a). Association was substantially decreased if Cys-4057 on r-apo(a) was replaced by Arg by site-directed mutagenesis or if Cys-4057 was chemically modified. Lack of association was also observed with r-apo(a) containing only 3, 5, or 7 kringle IV repeats without "unique kringle IV sequences", although Cys-4057 was present in all of these constructions. Synthesis and secretion of r-apo(a) was not dependent on its sialic acid content. r-Apo(a) was expressed even more efficiently in sialylation-defective CHO cells than in wild-type CHO cells. In transfected CHO cells defective in the addition of N-acetylglucosamine, apo(a) secretion was found to be decreased by 50%. Extracellular association with LDL was not affected by the carbohydrate moiety of r-apo(a), indicating a protein-protein interaction between r-apo(a) and apoB. These results show that, besides kringle IV-36, other kringle IV sequences are necessary for the extracellular association of r-apo(a) with LDL. Changes in the carbohydrate moiety of apo(a), however, do not affect complex formation

    Abnormal hypermethylation at imprinting control regions in patients with S-adenosylhomocysteine hydrolase (AHCY) deficiency

    Get PDF
    S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status

    Early-life adversity selectively impairs Ī±2-GABAA receptor expression in the mouse nucleus accumbens and influences the behavioral effects of cocaine

    Get PDF
    Haplotypes of the Gabra2 gene encoding the Ī±2 subunit of the GABAA receptor (GABAAR) are associated with drug abuse, suggesting that Ī±2-GABAARs may play an important role in the circuitry underlying drug misuse. The genetic association of Gabra2 haplotypes with cocaine addiction appears to be evident primarily in individuals who had experienced childhood trauma. Given this association of childhood trauma, cocaine abuse and the Gabra2 haplotypes, we have explored in a mouse model of early life adversity (ELA) whether such events influence the behavioral effects of cocaine and if, as suggested by the human studies, Ī±2-GABAARs in the nucleus accumbens (NAc) are involved in these perturbed behaviors. In adult mice prior ELA caused a selective decrease of accumbal Ī±2-subunit mRNA, resulting in a selective decrease in the number and size of the Ī±2-subunit (but not the Ī±1-subunit) immunoreactive clusters in NAc core medium spiny neurons (MSNs). Functionally, in adult MSNs ELA decreased the amplitude and frequency of GABAAR-mediated miniature inhibitory postsynaptic currents (mIPSCs), a profile similar to that of Ī±2 "knock-out" (Ī±2-/-) mice. Behaviorally, adult male ELA and Ī±2-/- mice exhibited an enhanced locomotor response to acute cocaine and blunted sensitization upon repeated cocaine administration, when compared to their appropriate controls. Collectively, these findings reveal a neurobiological mechanism which may relate to the clinical observation that early trauma increases the risk for substance abuse disorder (SAD) in individuals harbouring haplotypic variations in the Gabra2 gene.</p

    The effect of dietary fish oil on weight gain and insulin sensitivity is dependent on APOE genotype in humanized targeted replacement mice

    Get PDF
    We investigated the independent and interactive impact of the common APOE genotype and marine n-3 polyunsaturated fatty acids (PUFA) on the development of obesity and associated cardiometabolic dysfunction in a murine model. Human APOE3 and APOE4 targeted replacement mice were fed either a high-fat control diet (HFD) or a HFD supplemented with 3% n-3 PUFA from fish oil (HFD + FO) for 8 wk. We established the impact of intervention on food intake, bodyweight, and visceral adipose tissue (VAT) mass; plasma, lipids (cholesterol and triglycerides), liver enzymes, and adipokines; glucose and insulin during an intraperitoneal glucose tolerance test; and Glut4 and ApoE expression in VAT. HFD feeding induced more weight gain and higher plasma lipids in APOE3 compared to APOE4 mice (P < 0.05), along with a 2-fold higher insulin and impaired glucose tolerance. Supplementing APOE3, but not APOE4, animals with dietary n-3 PUFA decreased bodyweight gain, plasma lipids, and insulin (P < 0.05) and improved glucose tolerance, which was associated with increased VAT Glut4 mRNA levels (P < 0.05). Our findings demonstrate that an APOE3 genotype predisposes mice to develop obesity and its metabolic complications, which was attenuated by n-3 PUFA supplementation.ā€”Slim, K. E., Vauzour, D., Tejera, N., Voshol, P. J., Cassidy, A., Minihane, A. M. The effect of dietary fish oil on weight gain and insulin sensitivity is dependent on APOE genotype in humanized targeted replacement mice

    Investigating the basis of substrate recognition in the pC221 relaxosome

    Get PDF
    The nicking of the origin of transfer (oriT) is an essential initial step in the conjugative mobilization of plasmid DNA. In the case of staphylococcal plasmid pC221, nicking by the plasmid-specific MobA relaxase is facilitated by the DNA-binding accessory protein MobC; however, the role of MobC in this process is currently unknown. In this study, the site of MobC binding was determined by DNase I footprinting. MobC interacts with oriT DNA at two directly repeated 9 bp sequences, mcb1 and mcb2, upstream of the oriT nic site, and additionally at a third, degenerate repeat within the mobC gene, mcb3. The binding activity of the conserved sequences was confirmed indirectly by competitive electrophoretic mobility shift assays and directly by Surface Plasmon Resonance studies. Mutation at mcb2 abolished detectable nicking activity, suggesting that binding of this site by MobC is a prerequisite for nicking by MobA. Sequential site-directed mutagenesis of each binding site in pC221 has demonstrated that all three are required for mobilization. The MobA relaxase, while unable to bind to oriT DNA alone, was found to associate with a MobCā€“oriT complex and alter the MobC binding profile in a region between mcb2 and the nic site. Mutagenesis of oriT in this region defines a 7 bp sequence, sra, which was essential for nicking by MobA. Exchange of four divergent bases between the sra of pC221 and the related plasmid pC223 was sufficient to swap their substrate identity in a MobA-specific nicking assay. Based on these observations we propose a model of layered specificity in the assembly of pC221-family relaxosomes, whereby a common MobC:mcb complex presents the oriT substrate, which is then nicked only by the cognate MobA
    • ā€¦
    corecore