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H I G H L I G H T S

• Early-life adversity (ELA) is a risk factor for adult psychopathology and drug abuse.

• Gabra2 gene variations coupled with childhood trauma associate with cocaine abuse.

• ELA selectively impaired accumbal α2-GABAAR expression and function in adult mice.

• ELA and α2−/− mice displayed similar abnormal behavioral responses to cocaine.

• The findings complement clinical associations of ELA, Gabra2 gene and drug abuse.
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A B S T R A C T

Haplotypes of the Gabra2 gene encoding the α2-subunit of the GABAA receptor (GABAAR) are associated with
drug abuse, suggesting that α2-GABAARs may play an important role in the circuitry underlying drug misuse.
The genetic association of Gabra2 haplotypes with cocaine addiction appears to be evident primarily in in-
dividuals who had experienced childhood trauma. Given this association of childhood trauma, cocaine abuse and
the Gabra2 haplotypes, we have explored in a mouse model of early life adversity (ELA) whether such events
influence the behavioral effects of cocaine and if, as suggested by the human studies, α2-GABAARs in the nucleus
accumbens (NAc) are involved in these perturbed behaviors. In adult mice prior ELA caused a selective decrease
of accumbal α2-subunit mRNA, resulting in a selective decrease in the number and size of the α2-subunit (but
not the α1-subunit) immunoreactive clusters in NAc core medium spiny neurons (MSNs). Functionally, in adult
MSNs ELA decreased the amplitude and frequency of GABAAR-mediated miniature inhibitory postsynaptic
currents (mIPSCs), a profile similar to that of α2 “knock-out” (α2−/−) mice. Behaviourally, adult male ELA and
α2−/− mice exhibited an enhanced locomotor response to acute cocaine and blunted sensitisation upon repeated
cocaine administration, when compared to their appropriate controls. Collectively, these findings reveal a
neurobiological mechanism which may relate to the clinical observation that early trauma increases the risk for
substance abuse disorder (SAD) in individuals harbouring haplotypic variations in the Gabra2 gene.

1. Introduction

Drug addiction has both social and biological causes (Bierut, 2011;

Enoch, 2012; Kalda and Zharkovsky, 2015). For example, studies with
twins revealed that heritability accounted for∼50% and 60–70% of the
risk of an individual developing alcoholism and cocaine and opiate
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addiction respectively.(Goldman et al., 2005). Experience of childhood
trauma predisposes to subsequent drug dependence (Delavari et al.,
2016; Teicher et al., 2016), but this progression is markedly influenced
by genetic makeup (Enoch, 2011, 2012). Linkage and association stu-
dies identify variations in a region of chromosome 4 containing four
GABAAR-subunit genes, (Gabra2, Gabra4, Gabrb1, Gabrg1), that confer
an increased risk for developing substance abuse disorder (SAD;
Edenberg et al., 2004). In support, we reported that haplotypes of the
Gabra2 gene encoding the GABAAR α2-subunit are associated with
cocaine abuse in addicts (Dixon et al., 2010). Related variations of the
haplotype are additionally linked to abuse of other drugs, suggesting
that α2-GABAARs may play a key role in the circuitry underlying sub-
stance abuse (Covault et al., 2004; Enoch, 2011; Stephens et al., 2017).
Importantly, the genetic association of Gabra2 haplotypes with cocaine
addiction, and other forms of drug abuse, was evident only in in-
dividuals with experience of childhood trauma (Enoch et al., 2010).

In mammalian brain GABAARs are the major inhibitory ionotropic
receptors and are composed of five subunits drawn from a palette of 19
proteins (α1-6, β1-3, γ1-3, δ, ε, θ, ρ1-3), which underpins the expression
of ∼20–30 physiologically and pharmacologically distinct GABAAR
isoforms (Olsen and Sieghart, 2009; Rudolph and Möhler, 2014). These
receptor subtypes are expressed in a brain- and neuronal-specific
manner and occupy a distinct location within the neuron. Conse-
quently, specific receptor subtypes mediate, or influence particular
behaviors (Olsen and Sieghart, 2009; Rudolph and Möhler, 2014). The
nucleus accumbens (NAc) is a region intimately associated with reward,
addictions and an important locus for influencing stress-induced be-
haviors (Carlezon and Thomas, 2009; Russo et al., 2010; Scofield et al.,
2016). We reported that medium spiny neurons (MSNs) of the neonatal
mouse NAc express synaptic α2-GABAARs and that in the adult, ac-
cumbal α2-GABAARs influence the behavioral effects of cocaine (Dixon
et al., 2010).

It is now evident that exposure to stressful events during sensitive
developmental periods may produce long-lasting changes in the con-
nectivity of the mesolimbic neurocircuitry (Peña et al., 2017). Given the
association of childhood trauma, drug abuse and Gabra2 haplotypes
(Enoch et al., 2010), we have utilised immunohistochemistry, electro-
physiology and behaviour to explore in a mouse model of early-life
adversity (ELA) (Rice et al., 2008; Gunn et al., 2013) if such experiences
influence the behavioral effects of cocaine in adults and as suggested by
clinical studies, whether accumbal α2-GABAARs are implicated in these
perturbed behaviors (Heitzeg et al., 2014).

We report that neonatal experience of ELA produced in adult mice a
highly selective decrease in the expression and function of inhibitory
synaptic α2-GABAARs of accumbal MSNs. Behaviourally, adult ELA
mice presented with an enhanced locomotor effect to acute cocaine and
blunted sensitisation to chronic administration of this psychostimulant,
consistent with this early experience producing an enduring neural
plasticity. Intriguingly, adult α2−/− mice displayed a similar electro-
physiological and behavioral phenotype. Collectively, these observa-
tions are consistent with impaired expression of α2-GABAARs being a
factor in the altered effects of cocaine exhibited by ELA mice. An α2-
subunit SNP consistently implicated in SAD appears to decrease ex-
pression of this protein (Lieberman et al., 2015). Therefore, our findings
in this mouse model of early adversity appear to complement the
clinical literature linking childhood trauma and genetic variations in
the Gabra2 gene with increased risk of cocaine abuse (Dixon et al.,
2010; Enoch et al., 2010). Consequently, such mice may provide an
insight into how genetic variations and the environment interact to
perturb brain circuitry, thereby predisposing to substance abuse, but
also to influence other psychological disorders such as anxiety and
depression. (Low et al., 2000; Dixon et al., 2008; Benham et al., 2017).

2. Materials and methods

2.1. Animals

Colonies of mice were maintained at the University of Dundee. All
experimentation was conducted according to the ARRIVE guidelines on
animal research (https://www.nc3rs.org.uk/arrive-guidelines). All
procedures were performed in accordance with the Animals (Scientific
Procedures) Act of 1986, after review by the University of Dundee
Ethical Review Committee and under the licenses of Dr. Belelli (60/
4005 & 70/8161) and Prof. Hales (70/8404). All mice employed in this
study, (wild type (WT), α2−/−, α1−/−, α1H101R and α2H101R), were
generated on a mixed C57BL/6J-129SvEv background as previously
described (McKernan et al., 2000; Sur et al., 2001; Dixon et al., 2008).
Mice were group housed, given free access to water and standard rodent
chow (Special Diet Service U.K.), maintained on a 12 h alternating
light-dark regimen with lights on at 7–7:30 a.m. The temperature and
the humidity were controlled at 21± 2 °C and 50 ± 5% respectively.
All experiments (behaviour, electrophysiology, immunohistochemistry,
qPCR) were conducted on mice/tissue obtained from the first two
generations of WT and mutant breeding pairs, the latter derived from
the corresponding heterozygous mice, bred at Dundee University.
Tissue required for immunohistochemistry (Portsmouth University) and
for qPCR studies (Mainz University) was prepared in Dundee and then
shipped as required.

2.2. The early-life adversity (ELA) paradigm

We previously described the ELA paradigm of fragmented maternal
care (Gunn et al., 2013), which was based on the publication by Rice
et al. (2008), with minor modifications. Timed, mated, pregnant, fe-
male mice were individually housed and monitored every 12 h for the
birth of pups, with the day of birth designated as P0. All dams and their
pups were left undisturbed until P2. If required, on day P2 the litters
were reduced to 6–8 pups of either gender. Initially, all dams and their
offspring were housed in a transparent cage, furnished with standard
sawdust on the cage floor (650ml) and were provided with a square
(5×5 cm) of cotton nesting material (Nestlet DBM West Lothian,
Scotland), which the dam subsequently shredded to form a nest.

At P2 the control dam and her pups were transferred to another
identical control cage, whereas for the ELA protocol the dam and pups
were transferred to a similar cage to the control cage, which however,
contained reduced nesting material (2/3 of the cotton square) and a
fine gauge (50mm) steel mesh platform floor, raised∼ 2.5 cm above
the sawdust covered cage floor. Both control and ELA mice were left
undisturbed until P9, when all pups with their dam were transferred to
a “control cage”, which lacked the raised floor and was furnished with
standard bedding and nesting material. All control and ELA pups re-
mained with their dam under normal husbandry conditions until
weaning at P21 when the cages were again changed. The behaviour of
WT control; WT ELA and α2−/− dams was determined by analysis of
video camera recordings; 3× 30min sessions a day during the light
(08:30; 15:00) and dark (22:00) phases on days 3–8 of the life of the
offspring (Gunn et al., 2013). The number of sorties of the dam from the
nest (i.e. the number of times the dam leaves the nest) was determined
for each session, was then totalled for the day and then totalled across
the period of investigation (p 3–8) – Gunn et al., 2013. Statistical
comparisons of the number of sorties per hour for control WT vs ELA WT
and for control WT vs α2−/− mice were made using the unpaired
Student's t-test.

All electrophysiology, immunohistochemistry, molecular biology
and cocaine behavioral studies were performed on male mice. As
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regards female mice, during their ovarian cycle the levels of certain
neurosteroids, that act as endogenous positive allosteric modulators of
the GABAAR, are known to fluctuate substantially (Belelli and Lambert,
2005). Given that such steroids influence the expression of the GABAAR
α2-subunit (Reddy et al., 2017) our initial focus was limited to male
mice. However, given that female rodents are reportedly more resilient
than their male counterparts to the ELA paradigm (Walker et al., 2017),
future comparative gender experiments are warranted.

2.3. Electrophysiology

WT control, WT ELA, α2−/−, α2H101R+/+, α1H101R+/+ mature
male mice (> 2 months) were killed by cervical dislocation in ac-
cordance with Schedule 1 of the U.K. Government Animals (Scientific
Procedures) Act of 1986. Coronal slices incorporating the NAc (300 μM
thick) were prepared as we previously described (Dixon et al., 2010;
Maguire et al., 2014). During the slice preparation, the tissue was
sustained in oxygenated ice-cold solution containing the following
(mM): 140 K gluconate, 15 Na gluconate, 4 NaCl, 10 HEPES and 0.2
EGTA, pH 7.2, 310–320 mOsm. Such slices were then maintained in a
holding chamber (room temperature) containing an oxygenated extra-
cellular solution (ECS) composed of (mM): 126 NaCl, 26 NaHCO3, 2.95
KCl, 1.25 NaH2PO4, 2 MgCl2, 2 CaCl2, 10 glucose, (305–310 mOsm, pH
7.4). The slices were left for> 1hr. before making recordings. Re-
cording electrodes were prepared from thick-walled borosilicate glass
(Garner Glass Company), fabricated to have open tip resistances of 3 –
5MΩ, when filled with intracellular solution. Whole-cell, voltage-clamp
recordings were made from visually identified MSNs of the NAc core
(using an Olympus BX50WI microscope) at 35 °C, with the majority of
recordings made at a holding potential (Vh) of −60 mV, apart from
those experiments investigating the glutamatergic “tonic” current
where the holding potential was +40 mV (see below). In all cases,
recordings were discarded if the series resistance changed (20% toler-
ance) during the course of the experiment.

For recording GABAAR-mediated phasic (mIPSCs) and tonic currents
the patch pipette was filled with an intracellular solution containing
(mM): 135 CsCl, 10 HEPES, 10 EGTA, 1 CaCl2, 2 MgCl2, 2Mg-ATP, 5
QX-314 (pH 7.2–7.3 with CsOH, 300–308 mOsm). The slice was per-
fused with an ECS containing 1 μM strychnine, 2 mM kynurenic acid,
and 0.5 μM tetrodotoxin (TTX). To investigate the effect of ELA on io-
notropic glutamate receptor-mediated phasic events (excitatory post-
synaptic currents – EPSCs) and on tonic currents of NAc core MSNs, we
utilised the recording conditions previously described (Gunn et al.,
2013). The ECS was similar to that used for recording GABAAR-medi-
ated currents in the current study, with the exceptions that it ad-
ditionally contained bicuculline (30 μM), with kynurenic acid omitted,
and a reduced MgCl2 (0.5 mM) concentration, the latter, in part to in-
crease the magnitude of the NMDAR-mediated tonic current (see
below), but additionally to enhance the mEPSC frequency. However,
under these ECS conditions initial experiments revealed a low phasic
event frequency, consequently impairing meaningful quantification of
the mEPSC parameters. Therefore we additionally excluded TTX to now
record sEPSCs. Note we had previously found in the PVN that prior ELA
increased the frequency of both sEPSCs and mEPSCs (Gunn et al.,
2013). The ICS was composed of in mM: 135 CH3O3SCs, 8 CsCl, 10
HEPES, 10 EGTA, 1 MgCl2, 1 CaCl2, 300–310 mOsm, pH 7.2–7.3 with
CsOH (Gunn et al., 2013). The sEPSCs were recorded at a Vh of
−60mV.

The inhibitory tonic current mediated by GABA primarily activating
extrasynaptic α4βδ-GABAARs was determined by quantifying the
change in the holding current (Vh=−60mV) induced by the GABAAR
antagonist bicuculline (30 μM) - see previous publications (Belelli et al.,
2005; Maguire et al., 2014). Preliminary experiments established that
core MSNs additionally exhibited a tonic current, primarily mediated
by extrasynaptic NMDA receptors. To investigate such tonic currents,
recordings were made in the presence of a GABAAR antagonist

(gabazine; 10 μM) at a Vh of +40 mV and in a low MgCl2 (0.1 mM) -
containing ECS, conditions to facilitate the unblocking of the NMDA
receptor associated ion channel by Mg2+. The pipette solution was
composed of: 135 CH3O3SCs, 1 EGTA, 10 HEPES, 5 TEA-Cl, 1 MgCl2,
0.5 Na GTP, 2Mg-ATP, 5 Tris phosphocreatine (280–290 mOsm pH
7.2–7.3 with CsOH). The change in holding current in response to either
kynurenic acid (2mM), or APV (50 μM) was determined as previously
described (Gunn et al., 2013).

2.4. Electrophysiology data and statistical analysis

Currents were filtered at 2 kHz using an eight-pole low-pass Bessel
filter and recorded via an A/D converter (NIDAQmax: National
Instruments) at a sampling rate of 10 kHz stored on the computer hard
drive for subsequent offline analysis using the Strathclyde
Electrophysiology Software, Electrophysiology Data Recorder/Whole-
Cell Analysis Program (WinEDR/WinWCP; Dr. J. Dempster, University
of Stratchclyde). The mIPSCs and sEPSCs were detected using an au-
tomated low amplitude (−4 pA, rise time duration of 1.0 ms) threshold
detection algorithm and visually inspected for validity. Accepted events
(at least 50 for each recording condition and each with a rise
time≤ 1ms) were analysed with respect to their peak amplitude, rise
time (10–90%) and their decay time course. A minimum of 50 events
were also digitally averaged by alignment at the midpoint of the rising
phase. For mIPSCs a least-squares minimization algorithm was used to
determine the decay time constant. The decay phase of such averaged
events was fitted (98–10% of the peak amplitude) by either:

a mono-exponential: [y(t) =A.e(-t/τ)], or

a bi-exponential function: [y(t) = Afast.e(−t/τfast) + Aslow.e(−t/
τslow)],

where: t= time, A= amplitude, τ= the decay time constant. Analysis
of the SD of residuals and use of the F-test to compare goodness of fit
revealed that the averaged event decay was always best fit with the sum
of 2 exponential components. Thus, a weighted decay time constant
(τw) was also calculated:

τw = τ1P1 + τ2P2

τ1 and τ2= the decay time constants of the first and second ex-
ponential functions, P1 and P2= the proportion of the synaptic current
decay described by each component.

To determine the mIPSC, or sEPSC frequency, events were auto-
matically detected using the EDR program on the basis of their rate of
rise (30–50 pAms−1) and subsequently manually scrutinized to exclude
spurious noise and include events that had failed to meet the trigger
specifications. All data are presented as the arithmetic mean ± SEM.
When data are presented normalised, the mean value was calculated by
averaging the normalised change for each cell following drug applica-
tion. The statistical significance of mean data was assessed using two-
tailed paired and two-tailed unpaired Student's t-tests, or one- or two-
way RM ANOVA followed by post-hoc Tukey test as appropriate, using
the GraphPad Prism 7. Statistical significance was set at p < 0.05. The
nonparametric Kolmogorov-Smirnoff test was used to compare cumu-
lative probability distributions. For a stringent comparison, statistical
significance was set at p < 0.01 for the Kolmogorov-Smirnoff test.

For GABA- and glutamate-mediated tonic currents the holding
current was sampled every 102.4 ms for a 1min period. At a sampling
rate of 10 kHz 1024 baseline points for each 102.4 ms provided one
data point. Epochs containing phasic events, or an unstable holding
current were excluded. To validate that the drug-induced changes in
holding current were not due to temporal “drift” two discrete 1min
sections of the recording were analysed for control (C1 and C2) and a
1min section analysed once the receptor antagonist effect had reached
equilibrium (D). The mean DC values for each control epoch were
pooled and the SD determined. The drug effect was considered genuine
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if the absolute change in the holding current (D – C2) was greater than
twice the SD associated with the DC measurements for the control
period (Gunn et al., 2013).

2.5. Immunohistochemistry

The quantitative immunohistochemical data are derived from five
adult (8–10 weeks old) C57BL6-129SvEv male mice, that had pre-
viously experienced the control, or the ELA cage condition (Gunn et al.,
2013; Maguire et al., 2014). Qualitative data are derived from four
adult (8–10 weeks old) C57BL6 male mice, that had previously ex-
perienced the control condition. Briefly, anaesthetised animals were
transcardially perfused with 0.9% saline solution for 3min, followed by
12min fixation with a fixative consisting of 1% paraformaldehyde, 15%
v/v saturated picric acid, in 0.1M phosphate buffer (PB), pH 7.4. The
brains were post-fixed in the same fixative solution overnight at 4 °C,
then transferred to phosphate buffer containing 0.05% sodium azide
and shipped from Dundee to Portsmouth.

Coronal sections (50 μm thick) were prepared on a Vibratome. For
antigen retrieval, the tissue sections were incubated at 37 °C for 10min
in 0.1 M PB, followed by 15min in 0.2 M HCl containing 1mg/ml
pepsin (Sigma, UK), after which they were washed thoroughly in Tris-
buffered saline containing 0.3% Triton-X100 (TBS-Tx) for 30min. Non-
specific binding of secondary antibodies was blocked by incubating
sections with 20% normal horse serum for 2 h at room temperature. The
tissue sections were incubated with combinations of the following
primary antibodies: goat anti DARPP-32, (Santa Cruz, # 8483), 1:250;
guinea pig anti GABAAR α1 subunit (Synaptic Systems, # 224,205),
1:1000; rabbit anti GABAAR α2 subunit (raised against amino acids
416–424 of the C-terminus, a generous gift of Werner Sieghart), diluted
in TBS-Tx, for 24- hr. at 4 °C. After washing with TBS-Tx, sections were
incubated in a mixture of appropriate secondary antibodies conjugated
with either Alexa Fluor 488 (Invitrogen, Eugene, OR), in-
docarbocyanine (Cy3; Jackson ImmunoResearch), and in-
dodicarbocyanine (Cy5; Jackson ImmunoResearch) for 2 h at room
temperature. Sections were washed in TBS-Tx and mounted in
Vectashield (Vector Laboratories, Burlingame, CA). The specificities of
the GABAAR α1 and α2 subunit antisera used in this study were con-
firmed in NAc tissue slices from GABAAR α1−/− and α2−/− mice re-
spectively. To confirm the absence of cross reactivity between IgGs in
double and triple immunolabelling experiments, some sections were
processed through the same immunocytochemical sequence, except
that only an individual primary antibody was applied with the full
complement of secondary antibodies.

2.6. Image acquisition

Sections were examined with a confocal laser-scanning microscope
(LSM710; Zeiss, Oberkochen, Germany) using either a Plan
Apochromatic 63× DIC oil objective (NA1.4), or a Plan Apochromatic
100× DIC oil objective (NA1.46). Z-stacks were used for routine eva-
luation of the labelling. All images presented represent a single optical
section. These images were acquired using sequential acquisition of the
different channels to avoid cross-talk between fluorophores, with the
pinholes adjusted to one airy unit. Images were processed with the
software Zen2009 Light Edition (Zeiss, Oberkochen, Germany) and
exported into Adobe Photoshop. Only brightness and contrast were
adjusted for the whole frame, and no part of a frame was enhanced, or
modified in any way.

2.7. Quantification of GABAAR α1-and α2-subunit immunoreactivity in the
NAc and statistical analysis

We have previously described the quantitative methods (Gunn et al.,
2013). All sections were processed and imaged under identical condi-
tions and analyses were performed blind. GABAAR α1-and α2-subunit

immunoreactivity presented as distinct, individual clusters. We, there-
fore, quantified the density of immunoreactive clusters, expressed both
as the number of individual clusters per 10 μm2 and as the average area
of clusters, expressed as μm2. In neurons, GABAARs cluster together
predominantly at synapses, but may also cluster on extrasynaptic
membrane micro-domains. Therefore analysis of such cluster im-
munoreactivity represents expression in such sub-cellular domains.
However, it is important to note that the antibody recognises particular
subunits and cannot unconditionally be equated directly to receptor
expression. Taking cognisance of that limitation, a decrease in the
density of such clusters could equate to fewer individual receptors
distributed across the area of an individual neuron, whereas a decrease
in the cluster area may reflect a reduced number of receptors dis-
tributed within specific sub-compartments, such as synapses. However,
confirmation would ultimately require ultra-structure analyses em-
ploying immunohistochemistry at the transmission electron microscope
level.

The imaging and quantification were performed as follows: within a
tissue section, 3 fields of view (FOV) were randomly selected within the
NAc core. Z-stacks consisting of three optical sections spaced 5 μm apart
in the Z plane were acquired for each FOV. The dimensions of each
optical section were 85 μm×85 μm x 1 μm in the X-Y-Z planes. Within
an optical section, the number of α-GABAAR subunit clusters was
manually counted and the average area of individual clusters measured,
using ImageJ software. A value for each FOV was obtained by com-
puting the average from the optical sections contained within a FOV,
and these were averaged for an individual tissue section. This was re-
peated in ∼4–5 tissue sections per mouse. The mean ± SEM cluster
density, or area, from 5 mice was then determined.

An unpaired Student's t-test was used to determine statistically
significant differences (p < 0.01) between WT control and WT ELA
mouse tissue. In a subset of experiments, we also quantified the density
of individual GABAAR α-subunit immunoreactive clusters which con-
tacted VGAT-immunoreactive puncta.

2.8. Quantitative RT-PCR analysis

WT control and WT ELA coronal slices incorporating the NAc were
prepared as described above for the electrophysiological studies, with
the exception that the slices were 800 μM thick (Dixon et al., 2010;
Maguire et al., 2014). Accumbal “punches” were then made and the
tissue manually trimmed using a scalpel and dissecting microscope. The
accumbal “punches” of 3 control and 3 ELA mice were subsequently
weighed and snap-frozen in liquid nitrogen prior to being shipped on
dry ice to Mainz University for RT-qPCR studies. Total RNA from
punches was isolated with RNAeasy Mini Kit (Qiagen, Hilden, Ger-
many), following the manufacturer's instructions. RNA quantification
was performed by measurements with the Qubit® RNA BR Assay Kit
(Life Technologies, Darmstadt, Germany) according to manufacturer's
instructions. The cDNA was synthesized from 50 ng total RNA by re-
verse transcription using oligodT and random hexamer primers with the
PrimeScript™ RT Reagent Kit (TaKaRa Bio, Shiga, Japan) according to
the manufacturer's instructions. The cDNA samples were then diluted
1:8, and 2 μl of the diluted cDNA was used for quantitative PCR (qPCR)
of the GABAAR subunit genes (Table 1) with SYBR Premix Ex Taq II (Tli
RNaseH Plus), ROX plus (TaKaRa Bio, Shiga, Japan) on a StepOnePlus

Table 1
Genes and primers for the RT-qPCR analysis.

Gene Sequence Forward Primer (5′-3′) Sequence Reverse Primer (5′-3′)

Gabra1 CACCATGAGGTTGACCGTGA CTACAACCACTGAACGGGCT
Gabra2 ACTAGCTGTTCAGCTTTGGCA ATGTTAGCCAGCACCAACCT
Gabra4 ACGAGAAATTGTGCCCGGAA CACTTCTGTAACAGGACCCCC
Gabrd GGCGCCAGGGCAATGAAT AAGTTTCGGGCATAGCCCTC

S.J. Mitchell et al. Neuropharmacology 141 (2018) 98–112

101



Real-Time PCR System (Life Technologies, Darmstadt, Germany). Data
was first explored with LinRegPCR (Ramakers et al., 2003) for calcu-
lating PCR efficiency and subsequently analysed using the REST soft-
ware with PCR efficiency correction (Pfaffl et al., 2002).

The relative expression ratio of a target gene was computed, based
on its RT-qPCR efficiencies (E) and the threshold cycle difference (ΔCt)
for 3 ELA samples versus 3 WT controls. With this approach the target
gene expression is normalised to the expression of non-regulated re-
ference genes (in this study Gapdh and Ub2q1), based on the following
equation:

Ratio = (Etarget)ΔCttarget (WT control – ELA sample)/(Eref)ΔCtref (WT
control – ELA sample).

Statistical significance was explored using the Pair Wise Fixed
Reallocation Randomisation Test© which forms part of the REST soft-
ware. This test assesses the probability of the alternate hypothesis that
the difference between the sample and control groups is due only to
chance (P(H1). To devise a strong randomisation test, we employed the
following randomisation scenario: “if any perceived variation between
samples and controls is due only to chance, then we could randomly
swap values between the 2 groups and not observe any greater differ-
ence than the difference we observe between the initial groups.” The
hypothesis test performs 10,000 random reallocations of samples and
controls between the groups, and counts the number of times the re-
lative expression on the randomly assigned group is greater than the
sample data (REST, 2009 Software User Guide 12/2009).

2.9. Cocaine behavioral studies

The locomotor activity of adult (2–4 months of age) male mice was
assessed using a system developed at the University of Sussex. Sixteen
black Perspex, circular runways (internal diameter, 11 cm; external
diameter, 25 cm; height, 25 cm) were set above a translucent platform.
Illumination of the runways was achieved by 2 fluorescent tubes (T4,
30W) positioned above a translucent Perspex sheet suspended 20 cm
above the runways. Mice were videoed from below through a translu-
cent Perspex floor by a camera (Fire-i; UniBrain, Scorpion Vision
Software, Hampshire, UK), that detected the moving shadow of the
subject. Images were digitized, recorded and locomotor activity de-
termined using Sussex University software written in Matlab (version
2007a, The MathWorks, Cambridge, UK). The overall distance travelled
was measured in meters (m). Experiments were conducted between
08:00 a.m. and 13:00 p.m. Before experimentation, all mice were ha-
bituated to the circular runways in two, once-daily, sessions. Following
habituation for all experiments mice were initially placed in the run-
ways for 30min, then returned to the home cage for 5min (during
which the apparatus was cleaned). Immediately following either a
single i.p. injection of saline, or of cocaine (10mg/kg), mice (WT con-
trol, WT ELA and α2−/− control) were then again placed in the run-
ways for a further 60min. The first 15min following injection was used
for analysis as the cocaine-induced increase of locomotor activity de-
creased after this time. To investigate sensitisation, all groups received
repeated, daily injections of saline, or cocaine (10mg/kg) for 10 ses-
sions, across 12 days (i.e. 5 days of treatment, then 2 day without
treatment, followed by a further 5 days of treatment). In a separate
cohort of mice doses of 0, 10 and 20mg/kg were tested to confirm
10mg/kg to be a submaximal effective dose for WT control, WT ELA
and α2−/− mice. In both the repeated cocaine/vehicle administration
paradigm and the dose-response study, the groups and treatments were
randomised, with the experimenter blinded to the variables of drug
treatment, or of mouse group.

2.10. Statistical analysis of behaviour

Two-tailed paired and two-tailed unpaired Student's t-tests were

performed for comparing the means between two dependent and in-
dependent groups respectively. For more than two groups an analysis of
variance (ANOVA), or a repeated measures ANOVA (RM ANOVA), one-
or two-way, were used as appropriate. For all tests, statistical differ-
ences were assumed to be significant when p < 0.05. When a test was
significant further analysis was performed using Tukey post-hoc ana-
lysis, ANOVA and individual between- or within-genotype comparisons
by t-test.

2.11. Reagents and drugs

Bicuculline methobromide (ENZO Life Sciences), strychnine hy-
drochloride (Sigma-Aldrich) kynurenic acid, D-APV (Abcam), gabazine
(HelloBio) and TTX (Tocris Bioscience), were prepared as aqueous stock
solutions and subsequently diluted in ECS to the desired final con-
centration. Zolpidem (Tocris Bioscience) was prepared as a con-
centrated (x 1000) stock solution in DMSO and then diluted in ECS to
the required concentration. The final DMSO concentration (0.1%v/v)
had no effect on mIPSCs. Cocaine hydrochloride (Sigma) was prepared
in a 0.9% saline solution and used on the day of preparation.

3. Results

3.1. In common with deletion of the GABAAR α2-subunit, prior ELA
selectively decreases phasic inhibition in nucleus accumbens core MSNs

In agreement with our previous study and that of others (Rice et al.,
2008; Gunn et al., 2013) the reduced bedding paradigm significantly
increased the number of sorties of the dam from the nest (WT con-
trol= 29.6 ± 3.03/hr. n= 9; WT ELA=50.5 ± 3.7/hr. n= 7;
t(14) = 4.437; p= 0.0006). Having confirmed a disrupted mother-pup
interaction, we utilised the whole-cell voltage-clamp technique to in-
vestigate the impact of ELA on inhibitory and excitatory neuro-
transmission in the NAc core MSNs of adult (> 2 months old) mice.
Prior experience of ELA in comparison to WT control conditions pro-
duced a significantly reduced mIPSC amplitude (ELA=−68 ± 4 pA,
n=25; control=−87 ± 4 pA, n=51, post-hoc Tukey test
p= 0.0080, F(2,95)= 15.94, p=0.001, one-way ANOVA) and fre-
quency (ELA=0.9 ± 0.1 Hz, n=25; control= 1.5 ± 0.1 Hz,
n=51, post-hoc Tukey test p= 0.0024, F(2,95)= 8.31, p=0.0005,
one-way ANOVA), but with no change to their kinetics, (Fig. 1A,C,D).

(ELA=−68 ± 4 pA, n= 25; control=−87 ± 4 pA, n= 51,
t(74) = 2.791, p=0.0067, unpaired t-test) and frequency
(ELA=0.9 ± 0.1 Hz, n= 25; control= 1.5 ± 0.1 Hz, n= 51,
t(74) = 3.605, p=0.0006, unpaired t-test).

We reported that, in addition to phasic inhibition mediated by sy-
naptic GABAARs, adult NAc. core MSNs express extrasynaptic GABAARs
composed of α4, β and δ subunits, that mediate a tonic inhibitory
current, due to their activation by ambient concentrations of GABA
(Maguire et al., 2014; Stephens et al., 2017). This tonic current, re-
vealed by the application of bicuculline (30 μM), was similar
(t(40) = 1.176, p=0.2465, unpaired t-test) for MSNs derived from
control (24 ± 2 pA; n= 32) and ELA mice (22 ± 4 pA; n=10) –
(Fig. 1E and F). Hence, prior ELA selectively compromised GABA-ergic
phasic, but not tonic inhibition.

We observed that ELA produced an increase in glutamatergic drive,
to the CRF-releasing neurons of the paraventricular nucleus (PVN),
manifest as an increase in the frequency of both mEPSCs and sEPSCs,
with, in contrast to the NAc core, relatively little effect on GABAergic
inhibition (Gunn et al., 2013). In preliminary control recordings the
frequency of NAc mEPSCs was relatively low, hampering meaningful
analysis of EPSC properties (See Methods Section 2.3). Therefore, we
investigated the influence of ELA upon sEPSCs, mediated by synaptic
ionotropic AMPA receptors. In contrast to the PVN, ELA had no sig-
nificant effect upon the sEPSC frequency, or amplitude (t(18) = 0.4421,
p=0.6637 and t(14) = 0.8553, p=0.4068 respectively, unpaired t-
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Fig. 1. In common with deletion of the α2-subunit, prior experience of ELA produced a selective decrease of phasic GABAAR-mediated inhibition in adult mouse NAc.
MSNs. Note for all traces and bar charts the control, ELA and α2−/− condition are black, blue and green respectively. A, B) Illustrated are superimposed, re-
presentative, averaged GABAAR-mediated mIPSCs, recorded from accumbal core MSNs, demonstrating the effect of A) prior ELA (WT ELA), and B) the α2 subunit
deletion (α2−/−) upon the mIPSC amplitude compared to WT controls. A decrease in the mIPSC peak amplitude is evident for both conditions. (C, D). Bar charts
(mean ± S.E.M) comparing against WT controls the impact of prior ELA and of deleting the GABAAR α2-subunit upon (C) the peak amplitude and (D) the frequency
of GABAAR-mediated mIPSCs. Prior ELA (n=25), or the deletion of the α2-subunit (n=22), significantly decreased both the mIPSC peak amplitude and their
frequency compared to WT (n= 51) –compare also the traces in panel E where the ELA-induced decrease in mIPSC frequency is clearly evident. The statistical
significance was determined by a one-way RM ANOVA followed by a Tukey post-hoc test (for panels C, & D) - **p < 0.01; ****p < 0.0001, NS = non-significant.
(E) Illustrated are representative traces of MSN whole-cell current recordings obtained from a WT control and a WT ELA mouse before and after bicuculline
application. For both conditions, the GABAAR antagonist bicuculline (30 μM) produced a similar outward current and an associated decrease in the membrane noise.
The broken lines indicate the mean holding current prior to bicuculline application. Note with this relatively slow time scale the mIPSCs appear as relatively brief
downward deflections. Comparison of these traces illustrates the ELA-induced decrease in mIPSC frequency. (F) A bar chart (mean ± s.e.m) demonstrating that the
outward current produced by bicuculline (30 μM) is not influenced by prior experience of ELA (WT control n= 32; WT ELA n=10; p= 0.2465, unpaired t-test versus
WT control). (G–I) Bar charts (mean ± s.e.m.) demonstrating that prior experience of ELA has no effect on the G) peak amplitude, or H) frequency of sEPSCs,
(n=7–9; unpaired Student's t-test; p= 0.41 and 0.664 respectively), or I) on the magnitude of the excitatory tonic current (see Methods) revealed by 2mM
kynurenic acid (control and ELA n=6; unpaired Student's t-test p= 0.97). Additionally, Panel G illustrates representative superimposed WT control (black) and WT
ELA (grey) averaged sEPSCs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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test) – Fig. 1G and H. For PVN neurons, ELA additionally caused a large
increase in an excitatory tonic conductance mediated primarily by ex-
trasynaptic NMDA receptors (Gunn et al., 2013). Here, at a holding
potential of +40 mV, in a low magnesium ECS (see Methods), for all
MSNs tested, the non-selective ionotropic glutamate receptor antago-
nist kynurenic acid (2 mM) induced an inward current, (37 ± 3 pA;
n = 6), primarily mediated by NMDA receptors (a similar current was
produced by the NMDA receptor antagonist APV - 50 μM – not shown).
In contrast to the PVN, ELA had no effect on the magnitude of this tonic
excitatory current revealed by kynurenic acid (32 ± 1 pA; n = 7)
versus WT control (t(10) = 0.03063, p= 0.9762, unpaired t-test) -
Fig. 1I. In summary, in NAc core MSNs, prior experience of ELA se-
lectively impaired phasic inhibition, with no effect on tonic inhibition,
or phasic and tonic excitatory transmission. Future studies will in-
vestigate sIPSCs to determine whether network driven GABA release is
influenced by prior ELA.

Regarding the ELA-induced impairment of phasic inhibition,
(mIPSCs) we had previously shown that synaptic α2-GABAARs are ex-
pressed in NAc core MSNs of relatively young (p17-24) neonatal mice
(Dixon et al., 2010). Given this finding and the association of ELA and
Gabra2 haplotypes (see Introduction) we next investigated in MSNs
from adult mice the impact of genetically deleting the α2 subunit (α2−/

− mouse) on mIPSCs. A statistical analysis revealed an effect of mouse
group upon mIPSC peak amplitude (F(2,95)= 15.94, p=0.0001, one-
way ANOVA) and frequency (F(2,95)= 8.31, p=0.0005, one-way
ANOVA). In common with ELA, the mIPSCs recorded from the MSNs of
the α2−/− adult mouse exhibited a reduced amplitude (−53 ± 3 pA,
n=22, p= 0.0001 post-hoc Tukey test) and frequency of occurrence
(0.9 ± 0.2 Hz, n=22, p= 0.0058 post-hoc Tukey test) compared to
WT – Fig. 1 B,C,D.

To further investigate whether the impairment of phasic inhibition
induced by prior ELA results from a selective decreased expression of
the α2-subunit we now employed immunohistochemistry to determine
the synaptic GABAAR isoform(s) that mediate phasic inhibition in the
NAc core MSNs of adult control mice, with a focus on receptors in-
corporating the α2-and α1-GABAAR subunits, considered to be the
predominant synaptic isoforms (Hortnagel et al., 2013).

3.2. GABAARs incorporating the α1-and α2-subunit are expressed on NAc
core MSNs and mediate synaptic inhibition

The distribution of MSNs within the NAc was revealed by im-
munoreactivity for DARPP-32 (Fig. 2A1, B1), a cytosolic protein, ex-
clusively expressed by dopamine receptor-expressing neurons (Walaas
and Greengard, 1984). In adult MSNs, immunoreactivity for the α2-
subunit was clearly evident and was closely associated with that of
DARPP-32, indicating a predominant localisation within the MSNs
(Fig. 2A1,2). The specificity of NAc staining by the α2-subunit antibody
was confirmed by immunohistochemistry of tissue derived from α2−/−

mice (not shown). There was a notable gradient of expression between
the core and shell sub-regions of the NAc, with greater levels of the α2-
subunit signal apparent in the former (Fig. 2A2). At greater resolution,
the immunoreactivity pattern of the α2-subunit within the core ap-
peared as distinct clusters, which were often closely opposed to puncta
immunopositive for the vesicular GABA transporter (VGAT), a protein
enriched with GABAergic axon terminals, suggesting an enrichment of
α2-GABAARs within GABAergic synaptic junctions (Fig. 2A3). How-
ever, some of the α2-subunit immunopositive clusters were not asso-
ciated with those immunopositive for VGAT, whilst some VGAT im-
munopositive clusters were not associated with α2-subunit
immunopositive clusters. Quantification of the density of α2-subunit
immunoreactive clusters contacted by VGAT immunopositive puncta,
compared to the total density of α2-subunit immunoreactive clusters,
revealed that ∼83% of α2-subunit immunoreactive clusters are located
in proximity to putative GABA-ergic axon terminals (mean ± SEM;
total α2-subunit density, 4.6 ± 0.03 clusters per 10 μm2 vs α2-subunit-

VGAT density, 3.8 ± 0.03 clusters per 10 μm2, n=3 mice). Those
clusters of α2-subunit staining not co-localised with VGAT staining may
represent populations of extrasynaptic α2-GABAARs.

For comparison, we investigated the staining pattern for the
GABAAR α1-subunit. The antibody specificity was confirmed using NAc
slices obtained from α1−/− mice (not shown). In contrast to the α2-
subunit, immunoreactivity for the α1-subunit appeared evenly dis-
tributed within the core and shell sub-regions of the NAc (Fig. 2B1,2).
In common with α2-subunit staining, at high resolution, in the core α1-
subunit immunoreactivity also presented as individual clusters located
on DARPP-32-immunopositive somata and dendrites, with the majority
of clusters closely opposed to puncta immunopositive for VGAT
(Fig. 2B3; arrowheads). Although most α1-subunit immunoreactive
clusters were contacted by VGAT immunoreactivity, some isolated α1-
subunit immunoreactive clusters were not (Fig. 2B3; thin arrows),
suggesting the expression of a population of extrasynaptic α1-GA-
BAARs. Additionally, some VGAT immunopositive puncta were not as-
sociated with α1-subunit immunoreactive clusters (Fig. 2B3; thick ar-
rows), implying GABAergic synapses devoid of α1-GABAARs, probably
containing α2-GABAARs (see above). Quantification of the density of
α1-subunit immunoreactive clusters contacted by VGAT im-
munopositive puncta, compared to the total density of α1-subunit im-
munoreactive clusters, revealed that ∼69% of α1-subunit im-
munoreactive clusters are located within close proximity to putative
GABAergic axon terminals (mean ± SEM; total α1-subunit density,
3.5 ± 0.03 clusters per 10 μm2 versus α1 subunit-VGAT density,
2.4 ± 0.04 clusters per 10 μm2, n=3 mice).

Given the close overlap of the α1-and α2-subunit immunoreactivity
patterns in the core, we examined whether any co-localisation between
α1-and α2-subunit immunoreactive clusters was detectable. Numerous
co-localised clusters, immunoreactive for both the α1-and α2-subunits
were detectable (Fig. 2C1-3). However, quantification of the density of
α1-and α2-subunit co-localised clusters (mean ± SEM, 1.1 ± 0.05
clusters per 10 μm2), compared to the total α1-subunit (mean ± SEM,
3.5 ± 0.05 clusters per 10 μm2) and α2-subunit (mean ± SEM,
4.8 ± 0.02 clusters per 10 μm2) immunoreactive clusters revealed
that∼ 31% and ∼23% of total α1-and α2-subunit clusters were co-
localised respectively. This analysis implies that some populations of
GABAergic synapses of NAc core MSNs are likely to contain receptors
incorporating both α1-and α2-subunits and/or synapses containing
distinct populations of both α1-and α2-GABAARs.

3.3. The effect of ELA on NAc GABAAR subunit mRNA and protein
expression in adulthood

To investigate the influence of prior ELA upon GABAAR-subunit
expression we first employed qPCR to compare the relative subunit
mRNA levels in male (> 2 months) control and ELA mice. Importantly,
in adult mice, prior ELA produced a significant reduction of mRNA
expression for the α2-subunit in accumbal tissue “punches” compared
to WT controls (p < 0.0001), with no significant effect on the mRNA
expression levels for the α1, α4, or δ subunit genes (p > 0.05, Table 2).
These data indicate that in the NAc, ELA selectively influences the ex-
pression of the α2-subunt mRNA in the adult. Note in common with
ELA, we reported that the accumbal mRNA levels of α1-and α4-subunits
were similarly not changed in the α2−/− mouse (Dixon et al., 2010).

Immunohistochemistry was performed on tissue from male (> 2
months) WT control and WT ELA mice to determine whether the ELA-
induced alteration in GABAAR subunit mRNA expression translated to
the protein level. We focussed on the α1-and α2-subunits, which as
shown above in the NAc. core form the predominant synaptic GABAAR
isoforms (Hörtnagl et al., 2013).

A clear difference in the intensity of immunoreactivity for the α2-
subunit was evident in tissue obtained from control compared with ELA
mice (Fig. 3A1, B1), processed and imaged under identical conditions.
Quantitative analysis of the α2-subunit immunoreactive clusters

S.J. Mitchell et al. Neuropharmacology 141 (2018) 98–112

104



confirmed a significant decrease, not only of their density (mean ±
SEM: control= 3.8 ± 0.14 clusters per 10 μm2 versus ELA, 2.5 ± 0.14
clusters per 10 μm2; n=5 mice; t(8)= 5.254, p=0.0008, unpaired
Student's t-test), but also in their area (mean ± SEM, con-
trol= 0.095 ± 0.004 μm2, n=5 mice versus ELA,
0.060 ± 0.004 μm2, n=5 mice; t(8)= 6.345, p= 0.0002, unpaired
Student's t-test). Notably, there were no significant differences in the
density of co-labelling for neuroligin 2, a protein located exclusively
within inhibitory synapses (Varoqueaux et al., 2004) confirming that
equivalent fields of view and proportions of synapses within control and
ELA tissue were selected for comparison (mean ± SEM; control,
5.3 ± 0.2 clusters per μm2 versus ELA, 5.8 ± 0.1 clusters per μm2,

n=5 animals each; t8= 0.8061, p= 0.43, unpaired Student's t-test).
In agreement with the decreased density of α2-subunit immunoreactive
clusters, there was a significant decrease in the number of clusters
contacted by VGAT immunopositive puncta (mean ± SEM; control α2-
subunit/VGAT density= 3.5 ± 0.11 clusters per 10 μm2 versus ELA α2-
subunit-VGAT density= 2.1 ± 0.13 clusters per 10 μm2,
t(8)= 8.10998, p=0.0004, unpaired Student's t-test, n= 5 mice;
Fig. 3A2, B2, C1-3). Collectively, these findings suggest a significant
decrease in the expression of the GABAAR α2-subunit in MSN synapses
in adulthood, as a consequence of ELA.

This effect of ELA appeared to be restricted to the α2-subunit, as
there were no significant differences in either the density of α1-subunit

Fig. 2. The immunolocalisation of the GABAAR α1 and the α2 subunit in the mouse nucleus accumbens core. (A1, B1) Illustrates the immunoreactivity for DARPP-
32, a phospho-protein located selectively in dopamine receptor expressing neurons, which in the ventral striatum delineates the distribution of medium spiny neurons
(MSNs). (A2) illustrates that immunoreactivity for the α2-subunit is expressed throughout the ventral striatum and closely follows the distribution of (A1) DARPP-32
immunolabelling, indicating expression in MSNs. Note the enrichment of the α2-subunit immunoreactivity within the core sub-region of the NAc compared to the
shell. (A3) shows the association between the immunoreactivity for the GABAAR α2-subunit and the GABAergic axon terminal marker protein vesicular GABA
transporter (VGAT) on DARPP-32 immunopositive profiles, which suggests a predominantly synaptic location for this subunit. Numerous α2-subunit immunoreactive
clusters are contacted by VGAT immunopositive puncta (arrowheads). However, some α2-subunit immunoreactive clusters are not associated with VGAT puncta
(thin arrows), whilst some VGAT puncta are not associated with α2-subunit immunoreactive clusters (thick arrows). (B2) illustrates the immunoreactivity for the
GABAAR α1-subunit. In contrast to the α2-subunit staining, note the relatively even distribution of α1-subunit immunoreactivity between the core and the shell sub-
regions. (B3) shows the association between immunoreactivity for the GABAAR α1-subunit and VGAT, on DARPP-32 immunopositive profiles, which suggests a
predominantly synaptic location for this subunit. Numerous α1-subunit immunoreactive clusters are contacted by VGAT immunopositive puncta (arrowheads).
However, some α1-subunit immunoreactive clusters are not associated with VGAT puncta (thin arrows), whilst some VGAT puncta are not associated with α1-subunit
immunoreactive clusters (thick arrows). (C) Clusters immunoreactive for (C1) the GABAAR α1-subunit and (C2) the GABAAR α2-subunit are (C3) co-localised
(arrowheads) on DARPP-32-immunopositive somata and dendrites. The thin arrows indicate individual clusters, which are not co-localised. Ac= anterior com-
missure; LV= lateral ventricle. Scale bars: A1,2; B1,2= 200 μm; A3, B3=5 μm; C1-3=2 μm.
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immunoreactivity (mean ± SEM; control= 3.3 ± 0.1 clusters per
μm2 versus ELA=3.1 ± 0.2 clusters per μm2, n= 5 mice each;
t(8) = 0.7675, p=0.4648, unpaired Student's t-test), or the area of in-
dividual clusters (mean ± SEM; control= 0.09 ± 0.01 μm2 versus
ELA=0.09 ± 0.02 μm2, n= 5 mice each; t(8) = 0.4746, p=0.6478,
unpaired Student's t-test) in tissue obtained from control and ELA mice,
processed and imaged under identical conditions (Fig. 3C1,2).

To complement the immunohistochemistry and establish the pre-
sence of functional synaptic α1-and α2-GABAARs we investigated in
paired recordings the actions of zolpidem on mIPSCs. We demonstrated
for thalamo-cortical neurons that a low concentration (100 nM) of
zolpidem selectively prolonged mIPSCs mediated by synaptic α1-
GABAARs, whereas 1 μM zolpidem additionally influenced α2-and α3-
GABAARs (Peden et al., 2008). Note zolpidem has little effect on α5-
GABAARs (Pritchett and Seeburg, 1990). We therefore compared the
action of zolpidem on mIPSCs of WT control mice, with those of mice
engineered to express an H101R mutation in either the α1-or the α2-
subunit, thereby rendering synaptic receptors incorporating these sub-
units insensitive to benzodiazepines and to zolpidem (e.g. Peden et al.,
2008). In agreement with the immunohistochemistry, zolpidem
(100 nM) prolonged the mIPSC decay of MSNs derived from WT mice
(control τw=8.5 ± 0.7ms, zolpidem=10.7 ± 1.1ms; n=8;
t(7) = 5.024, p= 0.0015, paired t-test), but had no significant effect on
mIPSCs recorded from MSNs of the α1H101R mouse (control
τw=7.7 ± 0.4ms; zolpidem=8.1 ± 0.6ms, n= 5, t(4)= 1.133,
p=0.3205, paired t-test) –Fig. 4A1,2. To facilitate comparison across
these mouse groups the effect of zolpidem was expressed as a percen-
tage of control (Fig. 4C). A one-way RM ANOVA confirmed the effect of
zolpidem (100 nM) to be dependent on mouse group (F(2,23)= 4.714,
p=0.02), with a significant difference between the effect of zolpidem
upon mIPSC decay recorded from WT and α1H101R mice (p=0.046,
post hoc Tukey test). A greater concentration of zolpidem (1 μM), fur-
ther prolonged the mIPSCs of WT MSNs (control τw=7.5 ± 0.2ms,
zolpidem τw=13.3 ± 0.8ms; n= 8 t(7) = 7.424, p=0.0001, paired
t-test) - Fig. 4B1, consistent with additional engagement of α1-GA-
BAARs and/or the presence of synaptic α2-GABAARs. Zolpidem (1 μM)
also significantly prolonged the mIPSCs recorded from the MSNs of the
α2H101R mouse (control τw=6.3 ± 0.3ms; zolpidem 1 μM
τw=8.3 ± 0.3ms, n= 7, t(6)= 8.173, p= 0.0002, paired t-test)
(Fig. 4B2). Again, to facilitate comparison across these mouse groups
the effect of zolpidem (1 μM) was expressed as a percentage of control
(Fig. 4C). Statistical analysis revealed a significant influence of the
mouse group on the zolpidem (1 μM) effect (F(2,19)= 5.069,
p=0.0172, one-way RM ANOVA), being reduced by the α2H101R
mutation compared to WT (p=0.0002, post-hoc Tukey test) - Fig. 4B
and C. These results confirm the presence of synaptic α2-GABAARs in
addition to the α1-GABAARs.

The qPCR and immunohistochemistry data suggested that in con-
trast to the α2-subunit, the MSN expression of the α1-subunit, was not

influenced by ELA. In paired recordings an α1-subunit selective con-
centration (100 nM) of zolpidem prolonged the mIPSCs of MSNs from
WT ELA (control τw=8.1 ± 0.4ms; zolpidem τw=10.2 ± 0.5ms
n=11, t(10)= 4.998, p=0.0005, paired t-test). To aid a comparison
across mouse groups the effect of zolpidem is shown as percentage in-
crease of τw, which is not significantly different between the WT con-
trol and WT ELA (p=0.958, post-hoc Tukey test), further suggesting
prior ELA to have little, or no impact upon α1-subunit expression
(Fig. 4A3, C).

In conclusion, given the immunohistochemistry and electro-
physiology findings, the ELA-induced decrease of the mIPSC amplitude
is consistent with the reduced number of post-synaptic α2-GABAARs.
Both the ELA and the α2−/− condition additionally decreased the
mIPSC frequency. Such an effect may imply that both prior ELA and
genetic deletion of the α2-subunit in common decrease either vesicular
GABA release, or inhibitory innervation. However, alternatively the
altered frequency may reflect a substantial post-synaptic loss of α2-
GABAARs at some inhibitory synapses, such that the remaining re-
ceptors are not sufficient to produce detectable phasic events i.e. ap-
parently silent synapses. In support, although ELA had no effect on
neuroligin expression (a postsynaptic marker of GABA-ergic synapses),
the number of VGAT α2-subunit co-clusters was decreased. However,
confirmation of this hypothesis would require ultra-structure analyses,
using immunohistochemistry at the transmission electron microscope
level.

3.4. ELA, in common with the deletion of the α2-GABAAR subunit,
influences the acute locomotor effects of cocaine and sensitisation

To investigate whether ELA influences the behavioral effects of
cocaine we compared the ability of this stimulant to acutely increase
locomotion and to cause locomotor-sensitisation upon repeated daily
cocaine administration in WT control and WT ELA. Given the ELA-in-
duced impairment of α2-GABAAR subunit expression, their behavioral
response to cocaine was additionally compared to that of the α2−/−

mouse. However, prior to this study we determined the behaviour of
the α2−/− dam in the control cage during p 2–9 of the life of the pups.
In comparison to WT control dams, the α2−/− mothers presented with
significantly fewer sorties from the nest (WT control= 29.6 ± 3.03/
hr. n= 9; α2−/−=13.9 ± 2.5/hr. n= 6; t(13) = 3.67; p=0.0028),
perhaps reflecting a “freezing” behaviour associated with the anxio-
genic phenotype of α2−/− mice (Dixon et al., 2008; Koester et al.,
2013). By comparison, WT dams undergoing ELA exhibit an increased
number sorties, compared with WT controls. These contrasting beha-
viours of a global knockout with a partial knockdown during neonatal
development warrant further studies to 1) compare ELA and α2−/−

mice in tests predictive of anxiogenic behaviour, and 2) determine the
impact of ELA upon α2-subunit expression in other brain regions. In
this respect, the influence of α2-subunit on the anxiolytic actions of

Table 2
ELA selectively reduces accumbal GABRA2 mRNA.

Gene PCR Reaction Efficiency Expression Std. Error 95% C.I P(H1)= p-value Result

Gapdh 0.956 1.005
Ub2q1 0.952 0.995
Gabra1 0.984 0.948 0.772–1.171 0.632–1.412 0.259 No change
Gabra2 1.0 0.645 0.531–0.790 0.423–0.935 < 0.0001 Decreased
Gabra4 0.944 0.951 0.789–1.152 0.660–1.371 0.245 No change
Gabrd 0.85 1.073 0.856–1.342 0.676–1.643 0.180 No Change

The relative expression of the four GABAAR subunit genes investigated (Gabra1, Gabra2, Gabra4, Gabrd) normalised to the two reference genes Gapdh and Ub2q1 in
NAc tissue punches of ELS versus control mice. P(H1), as the central outcome of the Pair Wise Fixed Reallocation Randomisation Test© and indicated in the Table,
represents the probability of the alternate hypothesis that the difference between the sample and control groups is due only to chance (see Methods Section 2.8). The
mean ratio of Gabra2 was 0.645 in the ELA sample group compared to the WT group (1.0) with the true population effect between 0.423 and 0.935 (95% C.I.), which
is sufficient to reject the null hypothesis of no difference at the p < 0.05. The applied Pair Wise Fixed Reallocation Randomisation Test© at 10,000 random
reallocations of samples and controls further proved the downregulation of Gabra2 to be highly significant (P(H1)=p < 0.0001).
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Fig. 3. Prior experience of early life adversity produces a selective decrease in GABAAR α2-subunit immunoreactivity in the mouse NAc core. (A1) A representative
image of α2-subunit immunoreactivity in the NAc core of a WT control mouse aged two months. (A2) shows a composite image of immunoreactivity for the α2-
subunit (red), DARPP-32 (blue) and VGAT (green). The arrowheads highlight the significant degree of association between the α2-subunit and the VGAT signal. (B1)
Illustrates the comparative levels of α2-subunit immunoreactivity in tissue derived from ELA mice processed and imaged under identical conditions. (B2) In
comparison to control tissue, the association of the α2-subunit with VGAT immunoreactive clusters (arrowheads) appears dramatically reduced in WT ELA tissue. In
addition, the α2-subunit immunoreactive clusters are noticeably smaller compared to those in tissue from WT control mice (C) Bar charts (mean ± s.e.m.) illus-
trating the influence of prior ELA upon (C1) the cluster density (C2) the cluster area for the α1-and α2-subunit immunoreactivity and (C3) the density of VGAT/α2-
subunit co-clusters. Note ELA produced a significant decrease in (C1) the number, (C2) the size of α2-subunit immunoreactive clusters and (C3) in the number of
VGAT/α2-subunit co-clusters. By comparison prior ELA had no effect on these parameters for the α1-subunit clusters. (***p < 0.001 unpaired Student's t-test;
n = 5). ns = non-significant. Scale bars: (A1, B1) 10 μm; (A2, B2) 3 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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diazepam in particular hippocampal neuronal populations is pertinent
(Engin et al., 2018).

A daily administration protocol, repeated for 10 days, altered lo-
comotor activity (during a 15min test period, see Methods) in a manner
dependent on mouse group, treatment and day (session by mouse group
by treatment interaction: F(18, 738)= 1.729, p= 0.03 two way RM

ANOVA; Fig. 5A). A post-hoc analysis, revealed that on the first test day,
the acute administration of cocaine (10mg/kg i.p.) produced a sig-
nificant increase in locomotion for WT control mice compared to the
respective saline locomotor response (saline= 5.5 ± 1.0m; co-
caine= 27.3 ± 4.0m; t(26) = 3.665, p= 0.0011), for WT ELA
(saline= 6.0 ± 0.9m; cocaine=60.0 ± 8.5m; t(24) = 5.833,

Fig. 4. Mouse NAc core MSNs express synaptic α1-GABAA receptors, which are not influenced by prior ELA. (A1-3, B1-2) Superimposed, representative averaged
traces of GABAAR-mediated mIPSCs recorded from NAc core MSNs obtained from wild type (WT) control, α1H101R, α2H101R and ELA mice before (black) and after
(blue) the application of either (A1-3) 100 nM, or (B1-2) 1 μM zolpidem. The amplitude of these events are normalised to the corresponding control for that MSN to
aid comparison of the effect of zolpidem on the mIPSC decay. (C) A bar chart showing the effect of zolpidem (100 nM & 1 μM) (expressed as % increase; mean ± sem
n=5–11; of paired experiments per condition) on the mIPSC decay (τW) of MSNs derived from WT, α1H101R, α2H101R and ELA mice. A low concentration of
zolpidem (100 nM) significantly prolonged the mIPSC decay of MSNs derived from WT, and of ELA mice, but not that of α1H101R MSNs. Zolpidem (1 μM), caused a
further prolongation of WT mIPSCs. The effect of this greater concentration of zolpidem was reduced, by the α2H101R mutation. Collectively these results de-
monstrate for WT MSNs the presence of synaptic α1-and α2-GABAARs and that prior ELA did not influence the enhancing effects of an α1-GABAAR selective
concentration of zolpidem. The statistical significance (panel C) was determined by a one-way RM ANOVA followed by a Tukey post-hoc test *p < 0.05,
***p < 0.001, ns = non-significant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. A comparison of the effects of prior ELA and the genetic deletion of the α2-GABAAR subunit, on the acute locomotor effects of cocaine and sensitisation. (A). A
line graph illustrating the locomotor response (distance travelled in metres [m] during the first 15min), to a single daily i.p injection of either 10mg/kg cocaine
(black), or saline (grey) for WT control (triangle, saline n= 9, cocaine n=19), WT ELA (circle, saline n= 9, cocaine n=14) and α2−/− mice (square, saline
n= 12, cocaine n= 25), plotted over the 10 test days (session by mouse group by treatment interaction: F(18, 738)= 1.729, p= 0.03 two way RM ANOVA). (B). A
histogram illustrating the acute day 1 response (see also the grey dashed box in panel A) to cocaine (black) and saline (grey) for WT control (drug versus saline
t(26) = 3.665, p=0.0011), WT ELA (drug versus saline t(24)= 5.833, p= 0.0001)and α2−/− mice (drug versus saline t(32)= 5.321, p=0.0001). (C). A histogram
showing the locomotor response to an i.p injection of either saline (grey n=11 per mouse group), 10mg/kg cocaine (black n=11 per mouse group), or 20mg/kg
cocaine (white n= 11 permouse group). In agreement with Panel B, again a single i.p. injection of 10mg/kg cocaine produced a significant increase in the locomotor
activity of WT control (p= 0.0028), of WT ELA (p=0.0001) and of α2−/− mice (p= 0.0001) mice compared to saline (post hoc Tukey test). Additionally, in drug
naïve mice, a higher dose of cocaine (20mg/kg), further increased the locomotor activity of WT control (p= 0.0007), WT ELA (p=0.0053) and of α2−/− mice
(p=0.0001) mice versus the 10 mg/kg dose, **p < 0.01, ***p < 0.001 unpaired Students t-test, #p < 0.05, ##p < 0.01, ###p < 0.001 post hoc Tukey test.
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p=0.0001) and for α2−/− mice (saline= 6.9 ± 2.2m; co-
caine= 99.0 ± 10.3m; t(32) = 5.321, p=0.0001; Fig. 5A and B). In
comparison to WT control mice, this acute locomotor response to co-
caine was significantly greater for both the WT ELA (p=0.0228 post
hoc Tukey) and for the α2−/− mice (p=0.0001 post hoc Tukey) -
Fig. 5A and B.

Repeated drug, but not saline administration (saline; session x
mouse group effect F18, 243)= 1.242, p=0.2286 two way ANOVA),
resulted in a significant influence on the locomotor effect of cocaine
(cocaine; session by mouse group effect F(18, 495) = 4.395, p= 0.0001
one way ANOVA). Analysis of individual mouse groups revealed a
significant sensitisation for WT control upon repeated administration
(F(9, 189) = 6.105, p=0.0001 one way ANOVA), but not for the WT
ELA (F(9, 139) = 0.2787, p=0.9794 one way ANOVA). For the α2−/−

mouse group inspection of Fig. 5A revealed that the enhanced acute
response to cocaine on day 1 decreased upon subsequent repeated daily
administration (F(9, 249)= 4.414, p= 0.0001 one way ANOVA). Note
by day 3 all mouse groups (WT control, WT ELA and α2−/−) exhibited
a similar effect to cocaine (F(2, 57) = 1.050, p=0.357 one way
ANOVA), which was maintained until the last day of testing (Fig. 5A).

The lack of sensitisation to cocaine, observed in WT ELA and α2−/−

mice, may be an indirect consequence of the enhanced acute response
to cocaine i.e. the result of a “ceiling effect”. We therefore compared the
acute cocaine dose-response relationship for WT control, WT ELA and
α2−/− mice (0, 10, 20 mg/kg cocaine) in an additional cohort of mice
(see Methods and Fig. 5C). The acute locomotor response was sensitive
to the cocaine dose and as before also to the mouse group (dose x mouse
group interaction; F(4,90)= 3.23, p=0.0159; mouse group
F(2,90) = 14.37, p= 0.0001; dose F(2,90) = 115.5, p= 0.0001 two way
ANOVA; Fig. 5B and C). Importantly, in previously drug naïve mice, the
locomotor stimulant action of 20mg/kg cocaine was significantly more
effective than the 10mg/kg dose for all mouse groups (WT control mice
p=0.0007, WT ELA mice p= 0.0053, α2−/− mice p= 0.0001 Tukey
post hoc analysis; Fig. 5C).

In summary, in comparison to control WT mice, the ELA WT and the
α2−/− mice exhibit an increased acute response to cocaine, but blunted
sensitisation upon repeated daily administration. These behavioral si-
milarities to cocaine suggest an involvement of the GABAAR α2-subunit
in the altered behaviour of the ELA mouse. However, the causative
factors of the limited nesting model that result in the modified cocaine
behaviour and accumbal α2-GABAAR subunit expression/function are
not known. Possibilities include – an increase in the number of sorties
from the nest, the influence of an “anxious” mother upon the devel-
oping pups, the quality of the mother's milk, changes to suckling be-
haviour and nest temperature, or more likely some combination of
these factors (Walker et al., 2017). Clearly, the differential effect upon
the sortie behaviour of the ELA and the α2−/− dams suggests that this
particular aspect of the disruption of the mother-pup interaction alone
is not the prime driver of the behavioral changes.

4. Discussion

Clinical and animal studies provide compelling evidence to as-
sociate experience of stressful events during early development and a
subsequent increased incidence of psychiatric disorders, including de-
pression, anxiety and substance misuse (Lupien et al., 2009; Teicher
et al., 2016; Syed and Nemeroff, 2017). We employed an established
naturalistic mouse model of ELA, which provides face and construct
validity and reproducibility (Rice et al., 2008; Baram et al., 2012; Gunn
et al., 2013; Walker et al., 2017). In adult mice prior ELA caused a
selective decrease of α2-subunit expression in NAc core MSNs, thereby
impairing phasic inhibition. Such mice exhibited a dysregulated loco-
motor response to acute and chronic cocaine, a profile similar to the
α2−/− mouse.

4.1. ELA selectively influences phasic inhibition and NAc α2-GABAAR
expression

Given the role of the NAc in drug reward and abuse, we investigated
the impact of ELA on accumbal GABA-ergic inhibition and α2-subunit
expression. The adult NAc core exhibited much greater α2-subunit
immunoreactivity than the shell, which mainly co-localised with VGAT
staining, implying a synaptic locus. ELA decreased MSN mIPSC ampli-
tude and frequency, a profile similar to the adult α2−/− mouse.
Importantly, electrophysiological, immunohistochemical and PCR
analysis revealed a selective reduction of α2-subunit, but not α1-sub-
unit expression to cause this deficit of synaptic inhibition.

Accumbal core MSNs additionally express extrasynaptic GABAARs
composed of α4-, β- and δ-subunits, that mediate a tonic current
(Maguire et al., 2014). ELA had no effect on α4-, or δ-mRNA expression,
or on the tonic current. During early neonatal development, α2-subunit
expression is much greater than α1-subunit expression (Laurie et al.,
1992; Fritschy et al., 1994). Similarly, δ-subunit expression is devel-
opmentally delayed. Whether this chronology of subunit expression
influences the selective effects of ELA upon GABAAR-subunit expression
is not known.

We focused on the NAc core, given the relevance to behavioral
sensitisation caused by psychostimulants (Pierce et al., 1996; Cadoni
and Di Chiara, 1999; Ito et al., 2000) and clinical studies demonstrating
an influence of the Gabra2 haplotype on accumbal activation during
reward anticipation (Heitzeg et al., 2014). However, changes to GA-
BAAR-subunit expression in other brain regions are apparent in related
models of neonatal stress. Interestingly, α2-subunit expression is in-
creased in the amygdala and prefrontal cortex of ELA-exposed adult rats
(Gondre-Lewis et al., 2016). Furthermore, rodents experiencing dif-
ferent levels of maternal care, exhibit region-selective expression
changes in a variety of GABAAR subunits (Caldji et al., 2003, 2004).
Exposure to chronic stress, or to chronic corticosterone, produced re-
gion-selective changes of α2-subunit expression for high vs low anxiety
rats (Wisłowska-Stanek et al., 2013; Skórzewska et al., 2014). The
stress-induced plasticity of the α2-subunit is intriguing, as the anxio-
lytic effects of barbiturates and benzodiazepines are mediated by α2-
GABAARs and α2−/− mice exhibit an anxiogenic phenotype (Low et al.,
2000; Morris et al., 2006; Dixon et al., 2008; Atack, 2011; Smith et al.,
2012). Studies determining the influence of ELA on α2-subunit ex-
pression in other brain regions are warranted e.g. the hippocampus
where α2-GABAARs expressed in particular neurons appear crucial in
mediating diazepam-induced anxiolysis (Engin et al., 2018). Further-
more, as stress paradigms in adult rodents influence GABAAR-subunit
plasticity (Mody and Maguire, 2012) it would be of interest to de-
termine if accumbal α2-subunit expression was similarly selectively
impaired in mature mice following stress.

4.2. ELA influences cocaine behaviour: a role for α2-GABAARs?

In adult WT mice, ELA greatly increased the locomotor response to
acute cocaine and blunted behavioral sensitisation to repeated admin-
istration, findings consistent with previous reports (Moffett et al.,
2007). Alternative rodent models of ELA, employing protracted ma-
ternal separation, or neonatal isolation, also increased locomotor ac-
tivity to acute cocaine and/or blunted sensitisation to repetitive dosing
(Li et al., 2003; Kikusui et al., 2005; Gracia-Rubio et al., 2016). Al-
though the human correlate of sensitisation is not clear, in rodents it
provides a paradigm to investigate how stress, or drugs of abuse, induce
enduring behavioral and neuronal plasticity (Yap and Miczek, 2008).
Here, the cocaine phenotype (enhanced acute effect and impaired
sensitisation) of ELA mice was similar to that of mice raised under
control conditions, but lacking the α2-subunit gene (α2−/−), sug-
gesting that α2-subunit plasticity may contribute to the influence of
neonatal stress upon the effects of cocaine in adults. The down-reg-
ulation of α2-GABAARs in the NAc core may be particularly pertinent to
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psychostimulant-mediated behaviors. WT but not α2−/− mice exhibit
reduced drug intake in the first few days of self-administration, sup-
porting a protective role of α2-GABAARs against drug abuse (Dixon
et al., 2014). Furthermore, in rat accumbens a transient increase in α2-
GABAAR subunit surface expression accompanies withdrawal from co-
caine-self administration, with no changes to α1-or α4-subunits
(Purgianto et al., 2016).

4.3. Stress and cocaine cross-sensitisation: dopaminergic and glutamatergic
plasticity and a putative role for α2-GABAARs

Behavioral sensitisation from chronic psychostimulants is mirrored
by exposure to acute, or chronic stress (Lu et al., 2003; Yap and Miczek,
2008; Garcia-Keller et al., 2013). Although our primary focus con-
cerned the influence of ELA upon GABA-ergic transmission, plasticity of
glutamatergic and dopaminergic systems plays an important role in the
neuroadaptations underlying the facilitation by acute stress of the lo-
comotor and rewarding effects of psychostimulants, including cocaine
(Saal et al., 2003; Pacchioni et al., 2007; Kalivas, 2009). In mesolimbic
circuitry AMPA receptor (AMPAR) expression increased both in re-
sponse to cocaine (Churchill et al., 1999; Boudreau and Wolf, 2005;
Wolf and Ferrario, 2010) and to stress (Pierce et al., 1996; Garcia-Keller
et al., 2013). We reported that prior ELA increased both phasic and
tonic excitation of hypothalamic parvocellular CRF neurons (Gunn
et al., 2013). However, here ELA had no effect on phasic and tonic
excitation (mediated by synaptic AMPARs and extrasynaptic NMDARs
respectively) of NAc core MSNs, although our recordings from MSN
somata do not exclude changes to glutamatergic function occurring in
other cellular domains (dendrites).

We have not explored the impact of ELA upon accumbal dopami-
nergic transmission. However, our PVN studies suggest ELA to increase
CRF release (Gunn et al., 2013). As the NAc expresses CRF receptors
that directly influence dopamine release, an effect influenced by prior
stress (Lemos et al., 2012), it is conceivable that an ELA-induced in-
crease of CRF levels, either circulating, or emanating from direct ef-
ferent projections to the NAc (Zhang et al., 2016) contributes to the ELA
behavioral phenotype and accumbal receptor plasticity. Additionally,
α2-GABAARs can influence cocaine behavioral sensitisation in the NAc
via mechanisms downstream and independent from changes to dopa-
minergic transmission (Morris et al., 2008; Dixon et al., 2010). We
speculate that a partial loss of α2-GABAARs in the NAc may, under
certain conditions, e.g. stress exposure, play an important role in
skewing the output of motivational circuits towards addictive beha-
viors. Neuronal modelling studies (Wolf et al., 2005; Moyer et al., 2014)
suggest that this effect may be mediated by a loss of feed-forward in-
hibition in the MSN soma and lateral inhibition amongst MSNs, thereby
altering the gain of the striatal network, thus biasing the output of MSN
ensembles to favour “addictive” behaviour (Stephens et al., 2017).

4.4. ELA, α2-GABAARs and cocaine-mediated behaviors: clinical relevance

Our findings complement clinical studies linking haplotypes and
individual SNPs of the Gabra2 gene with susceptibility to several sub-
stances of abuse, including cocaine (Covault et al., 2004; Edenberg
et al., 2004; Enoch, 2011; Stephens et al., 2017). For cocaine, the as-
sociation for genetic variations only becomes significant when accom-
panied by early trauma experience (Enoch et al., 2010; Enoch, 2011).
The SNP rs299858 identifies a risk haplotype, common across multiple
studies of addicted populations, including individuals abusing cocaine
(Covault et al., 2004; Lappalainen et al., 2005; Fehr et al., 2006; Enoch
et al., 2010). Importantly, an iPSC culture model reported reduced
mRNA levels for the rs299858 harbouring Gabra2 gene (Lieberman
et al., 2015). Supporting an accumbal locus, adolescents harbouring the
Gabra2 (rs279858) haplotype exhibit greater NAc activation during
reward anticipation (Heitzeg et al., 2014). Therefore, collectively it is
conceivable that genetic- and stress-impaired accumbal α2-GABAAR

expression may synergise, providing a mechanism whereby early
trauma influences genetic susceptibility to substance abuse.

5. Conclusion

In preliminary studies we found ELA decreased accumbal α2-sub-
unit expression by P20, revealing this perturbation to be well-main-
tained from neonate to adult. Indeed, exposure to stressful events
during sensitive developmental periods may produce long-lasting
changes in the plasticity of mesolimbic neurocircuitry (Peña et al.,
2017). Future investigation may elucidate the molecular mechanisms
(e.g. epigenetics) underpinning such enduring changes to α2-subunit
expression. Given that female rodents appear more resilient to ELA, an
investigation of gender influence is warranted (Walker et al., 2017).
Additionally, we require a better understanding of the role of α2-GA-
BAARs to influence MSN excitability e.g. their impact upon distinct
glutamatergic inputs to the NAc implicated in stress-resilience and
stress-susceptibility (Bagot et al., 2015; Christoffel et al., 2015). Al-
though recognising that ELA causes plasticity in other brain regions, the
development of selective positive allosteric modulators of α2/3-GA-
BAARs (Atack, 2011) may be useful in treating individuals at risk for
substance abuse. Finally, these findings may lead to a better under-
standing of the clinical literature, which associates early-life adversity
and α2-GABAAR subunit haplotypes with substance abuse.
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