650 research outputs found

    Difference image photometry with bright variable backgrounds

    Full text link
    Over the last two decades the Andromeda Galaxy (M31) has been something of a test-bed for methods aimed at obtaining accurate time-domain relative photometry within highly crowded fields. Difference imaging methods, originally pioneered towards M31, have evolved into sophisticated methods, such as the Optimal Image Subtraction (OIS) method of Alard & Lupton (1998), that today are most widely used to survey variable stars, transients and microlensing events in our own Galaxy. We show that modern difference image (DIA) algorithms such as OIS, whilst spectacularly successful towards the Milky Way bulge, may perform badly towards high surface brightness targets such as the M31 bulge. Poor results can occur in the presence of common systematics which add spurious flux contributions to images, such as internal reflections, scattered light or fringing. Using data from the Angstrom Project microlensing survey of the M31 bulge, we show that very good results are usually obtainable by first performing careful photometric alignment prior to using OIS to perform point-spread function (PSF) matching. This separation of background matching and PSF matching, a common feature of earlier M31 photometry techniques, allows us to take full advantage of the powerful PSF matching flexibility offered by OIS towards high surface brightness targets. We find that difference images produced this way have noise distributions close to Gaussian, showing significant improvement upon results achieved using OIS alone. We show that with this correction light-curves of variable stars and transients can be recovered to within ~10 arcseconds of the M31 nucleus. Our method is simple to implement and is quick enough to be incorporated within real-time DIA pipelines. (Abridged)Comment: 12 pages. Accepted for publication in MNRAS. Includes an expanded discussion of DIA testing and results, including additional lightcurve example

    The CARMENES search for exoplanets around M dwarfs: Nine new double-line spectroscopic binary stars

    Full text link
    Context. The CARMENES spectrograph is surveying ~300 M dwarf stars in search for exoplanets. Among the target stars, spectroscopic binary systems have been discovered, which can be used to measure fundamental properties of stars. Aims. Using spectroscopic observations, we determine the orbital and physical properties of nine new double-line spectroscopic binary systems by analysing their radial velocity curves. Methods. We use two-dimensional cross-correlation techniques to derive the radial velocities of the targets, which are then employed to determine the orbital properties. Photometric data from the literature are also analysed to search for possible eclipses and to measure stellar variability, which can yield rotation periods. Results. Out of the 342 stars selected for the CARMENES survey, 9 have been found to be double-line spectroscopic binaries, with periods ranging from 1.13 to ~8000 days and orbits with eccentricities up to 0.54. We provide empirical orbital properties and minimum masses for the sample of spectroscopic binaries. Absolute masses are also estimated from mass-luminosity calibrations, ranging between ~0.1 and ~0.6 Msol . Conclusions. These new binary systems increase the number of double-line M dwarf binary systems with known orbital parameters by 15%, and they have lower mass ratios on average.Comment: Accepted for publication in A&A. 17 pages, 4 figure

    Spectrum radial velocity analyser (SERVAL). High-precision radial velocities and two alternative spectral indicators

    Full text link
    Context: The CARMENES survey is a high-precision radial velocity (RV) programme that aims to detect Earth-like planets orbiting low-mass stars. Aims: We develop least-squares fitting algorithms to derive the RVs and additional spectral diagnostics implemented in the SpEctrum Radial Velocity Analyser (SERVAL), a publicly available python code. Methods: We measured the RVs using high signal-to-noise templates created by coadding all available spectra of each star.We define the chromatic index as the RV gradient as a function of wavelength with the RVs measured in the echelle orders. Additionally, we computed the differential line width by correlating the fit residuals with the second derivative of the template to track variations in the stellar line width. Results: Using HARPS data, our SERVAL code achieves a RV precision at the level of 1m/s. Applying the chromatic index to CARMENES data of the active star YZ CMi, we identify apparent RV variations induced by stellar activity. The differential line width is found to be an alternative indicator to the commonly used full width half maximum. Conclusions: We find that at the red optical wavelengths (700--900 nm) obtained by the visual channel of CARMENES, the chromatic index is an excellent tool to investigate stellar active regions and to identify and perhaps even correct for activity-induced RV variations.Comment: 13 pages, 13 figures. A&A in press. Code is available at https://github.com/mzechmeister/serva

    Magnetic fields in M dwarfs from the CARMENES survey

    Get PDF
    M dwarfs are known to generate the strongest magnetic fields among main-sequence stars with convective envelopes, but the link between the magnetic fields and underlying dynamo mechanisms, rotation, and activity still lacks a consistent picture. In this work we measure magnetic fields from the high-resolution near-infrared spectra taken with the CARMENES radial-velocity planet survey in a sample of 29 active M dwarfs and compare our results against stellar parameters. We use the state-of-the-art radiative transfer code to measure total magnetic flux densities from the Zeeman broadening of spectral lines and filling factors. We detect strong kG magnetic fields in all our targets. In 16 stars the magnetic fields were measured for the first time. Our measurements are consistent with the magnetic field saturation in stars with rotation periods P<4d. The analysis of the magnetic filling factors reveal two different patterns of either very smooth distribution or a more patchy one, which can be connected to the dynamo state of the stars and/or stellar mass. Our measurements extend the list of M dwarfs with strong surface magnetic fields. They also allow us to better constrain the interplay between the magnetic energy, stellar rotation, and underlying dynamo action. The high spectral resolution and observations at near-infrared wavelengths are the beneficial capabilities of the CARMENES instrument that allow us to address important questions about the stellar magnetism.Comment: 13 pages of main text, 14 pages of online material, 2 table

    The CARMENES search for exoplanets around M dwarfs: Radial-velocity variations of active stars in visual-channel spectra

    Full text link
    Previous simulations predicted the activity-induced radial-velocity (RV) variations of M dwarfs to range from 1\sim1 cm/s to 1\sim1 km/s, depending on various stellar and activity parameters. We investigate the observed relations between RVs, stellar activity, and stellar parameters of M dwarfs by analyzing CARMENES high-resolution visual-channel spectra (0.50.5-11μ\mum), which were taken within the CARMENES RV planet survey during its first 2020 months of operation. During this time, 287287 of the CARMENES-sample stars were observed at least five times. From each spectrum we derived a relative RV and a measure of chromospheric Hα\alpha emission. In addition, we estimated the chromatic index (CRX) of each spectrum, which is a measure of the RV wavelength dependence. Despite having a median number of only 1111 measurements per star, we show that the RV variations of the stars with RV scatter of >10>10 m/s and a projected rotation velocity vsini>2v \sin{i}>2 km/s are caused mainly by activity. We name these stars `active RV-loud stars' and find their occurrence to increase with spectral type: from 3%\sim3\% for early-type M dwarfs (M0.00.0-2.52.5V) through 30%\sim30\% for mid-type M dwarfs (M3.03.0-5.55.5V) to >50%>50\% for late-type M dwarfs (M6.06.0-9.09.0V). Their RV-scatter amplitude is found to be correlated mainly with vsiniv \sin{i}. For about half of the stars, we also find a linear RV-CRX anticorrelation, which indicates that their activity-induced RV scatter is lower at longer wavelengths. For most of them we can exclude a linear correlation between RV and Hα\alpha emission. Our results are in agreement with simulated activity-induced RV variations in M dwarfs. The RV variations of most active RV-loud M dwarfs are likely to be caused by dark spots on their surfaces, which move in and out of view as the stars rotate.Comment: A&A accepte

    Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting

    Get PDF
    Nitrous oxide is a powerful greenhouse gas whose atmospheric growth rate has accelerated over the past decade. Most anthropogenic N2O emissions result from soil N fertilization, which is converted to N2O via oxic nitrification and anoxic denitrification pathways. Drought-affected soils are expected to be well oxygenated; however, using high-resolution isotopic measurements, we found that denitrifying pathways dominated N2O emissions during a severe drought applied to managed grassland. This was due to a reversible, drought-induced enrichment in nitrogen-bearing organic matter on soil microaggregates and suggested a strong role for chemo- or codenitrification. Throughout rewetting, denitrification dominated emissions, despite high variability in fluxes. Total N2O flux and denitrification contribution were significantly higher during rewetting than for control plots at the same soil moisture range. The observed feedbacks between precipitation changes induced by climate change and N2O emission pathways are sufficient to account for the accelerating N2O growth rate observed over the past decade

    ESPRESSO Mass determination of TOI-263b: An extreme inhabitant of the brown dwarf desert

    Full text link
    The TESS mission has reported a wealth of new planetary systems around bright and nearby stars amenable for detailed characterization of the planet properties and their atmospheres. However, not all interesting TESS planets orbit around bright host stars. TOI-263b is a validated ultra-short period substellar object in a 0.56-day orbit around a faint (V=18.97) M3.5 dwarf star. The substellar nature of TOI-263b was explored using multi-color photometry, which determined a true radius of 0.87+-0.21 Rj, establishing TOI-263b's nature ranging from an inflated Neptune to a brown dwarf. The orbital period-radius parameter space occupied by TOI-263b is quite unique, which prompted a further characterization of its true nature. Here, we report radial velocity measurements of TOI-263 obtained with 3 VLT units and the ESPRESSO spectrograph to retrieve the mass of TOI-263b. We find that TOI-263b is a brown dwarf with a mass of 61.6+-4.0 Mj. Additionally, the orbital period of the brown dwarf is found to be synchronized with the rotation period of the host star, and the system is found to be relatively active, possibly revealing a star--brown dwarf interaction. All these findings suggest that the system's formation history might be explained via disc fragmentation and later migration to close-in orbits. If the system is found to be unstable, TOI-263 is an excellent target to test the migration mechanisms before the brown dwarf becomes engulfed by its parent star.Comment: Accepted for Publication in Astronomy and Astrophysic

    Detection of He I λ10830\lambda10830 \AA{} absorption on HD 189733 b with CARMENES high-resolution transmission spectroscopy

    Get PDF
    We present three transit observations of HD 189733 b obtained with the high-resolution spectrograph CARMENES at Calar Alto. A strong absorption signal is detected in the near-infrared He I triplet at 10830 \AA{} in all three transits. During mid-transit, the mean absorption level is 0.88±0.040.88\pm0.04 % measured in a ±\pm10 km s1^{-1} range at a net blueshift of 3.5±0.4-3.5\pm0.4 km s1^{-1} (10829.84--10830.57 \AA{}). The absorption signal exhibits radial velocities of +6.5±3.1+6.5\pm3.1 km s1^{-1} and 12.6±1.0-12.6\pm1.0 km s1^{-1} during ingress and egress, respectively; measured in the planetary rest frame. We show that stellar activity related pseudo-signals interfere with the planetary atmospheric absorption signal. They could contribute as much as 80% of the observed signal and might also affect the radial velocity signature, but pseudo-signals are very unlikely to explain the entire signal. The observed line ratio between the two unresolved and the third line of the He I triplet is 2.8±0.22.8\pm0.2, which strongly deviates from the value expected for an optically thin atmospheres. When interpreted in terms of absorption in the planetary atmosphere, this favors a compact helium atmosphere with an extent of only 0.2 planetary radii and a substantial column density on the order of 4×10124\times 10^{12} cm2^{-2}. The observed radial velocities can be understood either in terms of atmospheric circulation with equatorial superrotation or as a sign of an asymmetric atmospheric component of evaporating material. We detect no clear signature of ongoing evaporation, like pre- or post-transit absorption, which could indicate material beyond the planetary Roche lobe, or radial velocities in excess of the escape velocity. These findings do not contradict planetary evaporation, but only show that the detected helium absorption in HD 189733 b does not trace the atmospheric layers that show pronounced escape signatures.Comment: 13 pages, 12 figures, accepted for publication in A&

    Dynamical masses of two young transiting sub-Neptunes orbiting HD 63433

    Full text link
    Although the number of exoplanets reported in the literature exceeds 5000 so far, only a few dozen of them are young planets (\le900 Myr). However, a complete characterization of these young planets is key to understanding the current properties of the entire population. Hence, it is necessary to constrain the planetary formation processes and the timescales of dynamical evolution by measuring the masses of exoplanets transiting young stars. We characterize and measure the masses of two transiting planets orbiting the 400 Myr old solar-type star HD\,63433, which is a member of the Ursa Major moving group. We analysed precise photometric light curves of five sectors of the TESS mission with a baseline of \sim750 days and obtained \sim150 precise radial velocity measurements with the visible and infrared arms of the CARMENES instrument at the Calar Alto 3.5 m telescope in two different campaigns of \sim500 days. We performed a combined photometric and spectroscopic analysis to retrieve the planetary properties of two young planets. The strong stellar activity signal was modelled by Gaussian regression processes. We have updated the transit parameters of HD\,63433\,b and c and obtained planet radii of Rpb_p^b\,=\,2.140\,±\pm\,0.087 R_\oplus and Rpc_p^c\,=\,2.692\,±\pm\,0.108 R_\oplus. Our analysis allowed us to determine the dynamical mass of the outer planet with a 4σ\sigma significance (MpcM_p^c\,=\,15.54\,±\pm\,3.86 M_\oplus) and set an upper limit on the mass of the inner planet at 3σ\sigma (MpbM_p^b\,<<\,21.76 M_\oplus). According to theoretical models, both planets are expected to be sub-Neptunes, whose interiors mostly consist of silicates and water with no dominant composition of iron, and whose gas envelopes are lower than 2\% in the case of HD\,63433\,c. The envelope is unconstrained in HD\,63433\,b
    corecore