650 research outputs found
Difference image photometry with bright variable backgrounds
Over the last two decades the Andromeda Galaxy (M31) has been something of a
test-bed for methods aimed at obtaining accurate time-domain relative
photometry within highly crowded fields. Difference imaging methods, originally
pioneered towards M31, have evolved into sophisticated methods, such as the
Optimal Image Subtraction (OIS) method of Alard & Lupton (1998), that today are
most widely used to survey variable stars, transients and microlensing events
in our own Galaxy. We show that modern difference image (DIA) algorithms such
as OIS, whilst spectacularly successful towards the Milky Way bulge, may
perform badly towards high surface brightness targets such as the M31 bulge.
Poor results can occur in the presence of common systematics which add spurious
flux contributions to images, such as internal reflections, scattered light or
fringing. Using data from the Angstrom Project microlensing survey of the M31
bulge, we show that very good results are usually obtainable by first
performing careful photometric alignment prior to using OIS to perform
point-spread function (PSF) matching. This separation of background matching
and PSF matching, a common feature of earlier M31 photometry techniques, allows
us to take full advantage of the powerful PSF matching flexibility offered by
OIS towards high surface brightness targets. We find that difference images
produced this way have noise distributions close to Gaussian, showing
significant improvement upon results achieved using OIS alone. We show that
with this correction light-curves of variable stars and transients can be
recovered to within ~10 arcseconds of the M31 nucleus. Our method is simple to
implement and is quick enough to be incorporated within real-time DIA
pipelines. (Abridged)Comment: 12 pages. Accepted for publication in MNRAS. Includes an expanded
discussion of DIA testing and results, including additional lightcurve
example
The CARMENES search for exoplanets around M dwarfs: Nine new double-line spectroscopic binary stars
Context. The CARMENES spectrograph is surveying ~300 M dwarf stars in search
for exoplanets. Among the target stars, spectroscopic binary systems have been
discovered, which can be used to measure fundamental properties of stars. Aims.
Using spectroscopic observations, we determine the orbital and physical
properties of nine new double-line spectroscopic binary systems by analysing
their radial velocity curves. Methods. We use two-dimensional cross-correlation
techniques to derive the radial velocities of the targets, which are then
employed to determine the orbital properties. Photometric data from the
literature are also analysed to search for possible eclipses and to measure
stellar variability, which can yield rotation periods. Results. Out of the 342
stars selected for the CARMENES survey, 9 have been found to be double-line
spectroscopic binaries, with periods ranging from 1.13 to ~8000 days and orbits
with eccentricities up to 0.54. We provide empirical orbital properties and
minimum masses for the sample of spectroscopic binaries. Absolute masses are
also estimated from mass-luminosity calibrations, ranging between ~0.1 and ~0.6
Msol . Conclusions. These new binary systems increase the number of double-line
M dwarf binary systems with known orbital parameters by 15%, and they have
lower mass ratios on average.Comment: Accepted for publication in A&A. 17 pages, 4 figure
Spectrum radial velocity analyser (SERVAL). High-precision radial velocities and two alternative spectral indicators
Context: The CARMENES survey is a high-precision radial velocity (RV)
programme that aims to detect Earth-like planets orbiting low-mass stars.
Aims: We develop least-squares fitting algorithms to derive the RVs and
additional spectral diagnostics implemented in the SpEctrum Radial Velocity
Analyser (SERVAL), a publicly available python code.
Methods: We measured the RVs using high signal-to-noise templates created by
coadding all available spectra of each star.We define the chromatic index as
the RV gradient as a function of wavelength with the RVs measured in the
echelle orders. Additionally, we computed the differential line width by
correlating the fit residuals with the second derivative of the template to
track variations in the stellar line width.
Results: Using HARPS data, our SERVAL code achieves a RV precision at the
level of 1m/s. Applying the chromatic index to CARMENES data of the active star
YZ CMi, we identify apparent RV variations induced by stellar activity. The
differential line width is found to be an alternative indicator to the commonly
used full width half maximum.
Conclusions: We find that at the red optical wavelengths (700--900 nm)
obtained by the visual channel of CARMENES, the chromatic index is an excellent
tool to investigate stellar active regions and to identify and perhaps even
correct for activity-induced RV variations.Comment: 13 pages, 13 figures. A&A in press. Code is available at
https://github.com/mzechmeister/serva
Magnetic fields in M dwarfs from the CARMENES survey
M dwarfs are known to generate the strongest magnetic fields among
main-sequence stars with convective envelopes, but the link between the
magnetic fields and underlying dynamo mechanisms, rotation, and activity still
lacks a consistent picture. In this work we measure magnetic fields from the
high-resolution near-infrared spectra taken with the CARMENES radial-velocity
planet survey in a sample of 29 active M dwarfs and compare our results against
stellar parameters. We use the state-of-the-art radiative transfer code to
measure total magnetic flux densities from the Zeeman broadening of spectral
lines and filling factors. We detect strong kG magnetic fields in all our
targets. In 16 stars the magnetic fields were measured for the first time. Our
measurements are consistent with the magnetic field saturation in stars with
rotation periods P<4d. The analysis of the magnetic filling factors reveal two
different patterns of either very smooth distribution or a more patchy one,
which can be connected to the dynamo state of the stars and/or stellar mass.
Our measurements extend the list of M dwarfs with strong surface magnetic
fields. They also allow us to better constrain the interplay between the
magnetic energy, stellar rotation, and underlying dynamo action. The high
spectral resolution and observations at near-infrared wavelengths are the
beneficial capabilities of the CARMENES instrument that allow us to address
important questions about the stellar magnetism.Comment: 13 pages of main text, 14 pages of online material, 2 table
The CARMENES search for exoplanets around M dwarfs: Radial-velocity variations of active stars in visual-channel spectra
Previous simulations predicted the activity-induced radial-velocity (RV)
variations of M dwarfs to range from cm/s to km/s, depending on
various stellar and activity parameters. We investigate the observed relations
between RVs, stellar activity, and stellar parameters of M dwarfs by analyzing
CARMENES high-resolution visual-channel spectra (m), which were
taken within the CARMENES RV planet survey during its first months of
operation. During this time, of the CARMENES-sample stars were observed
at least five times. From each spectrum we derived a relative RV and a measure
of chromospheric H emission. In addition, we estimated the chromatic
index (CRX) of each spectrum, which is a measure of the RV wavelength
dependence. Despite having a median number of only measurements per star,
we show that the RV variations of the stars with RV scatter of m/s and a
projected rotation velocity km/s are caused mainly by activity.
We name these stars `active RV-loud stars' and find their occurrence to
increase with spectral type: from for early-type M dwarfs
(MV) through for mid-type M dwarfs (MV) to
for late-type M dwarfs (MV). Their RV-scatter amplitude is
found to be correlated mainly with . For about half of the stars, we
also find a linear RVCRX anticorrelation, which indicates that their
activity-induced RV scatter is lower at longer wavelengths. For most of them we
can exclude a linear correlation between RV and H emission. Our results
are in agreement with simulated activity-induced RV variations in M dwarfs. The
RV variations of most active RV-loud M dwarfs are likely to be caused by dark
spots on their surfaces, which move in and out of view as the stars rotate.Comment: A&A accepte
Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting
Nitrous oxide is a powerful greenhouse gas whose atmospheric growth rate has accelerated over the past decade. Most anthropogenic N2O emissions result from soil N fertilization, which is converted to N2O via oxic nitrification and anoxic denitrification pathways. Drought-affected soils are expected to be well oxygenated; however, using high-resolution isotopic measurements, we found that denitrifying pathways dominated N2O emissions during a severe drought applied to managed grassland. This was due to a reversible, drought-induced enrichment in nitrogen-bearing organic matter on soil microaggregates and suggested a strong role for chemo- or codenitrification. Throughout rewetting, denitrification dominated emissions, despite high variability in fluxes. Total N2O flux and denitrification contribution were significantly higher during rewetting than for control plots at the same soil moisture range. The observed feedbacks between precipitation changes induced by climate change and N2O emission pathways are sufficient to account for the accelerating N2O growth rate observed over the past decade
ESPRESSO Mass determination of TOI-263b: An extreme inhabitant of the brown dwarf desert
The TESS mission has reported a wealth of new planetary systems around bright
and nearby stars amenable for detailed characterization of the planet
properties and their atmospheres. However, not all interesting TESS planets
orbit around bright host stars. TOI-263b is a validated ultra-short period
substellar object in a 0.56-day orbit around a faint (V=18.97) M3.5 dwarf star.
The substellar nature of TOI-263b was explored using multi-color photometry,
which determined a true radius of 0.87+-0.21 Rj, establishing TOI-263b's nature
ranging from an inflated Neptune to a brown dwarf. The orbital period-radius
parameter space occupied by TOI-263b is quite unique, which prompted a further
characterization of its true nature. Here, we report radial velocity
measurements of TOI-263 obtained with 3 VLT units and the ESPRESSO spectrograph
to retrieve the mass of TOI-263b. We find that TOI-263b is a brown dwarf with a
mass of 61.6+-4.0 Mj. Additionally, the orbital period of the brown dwarf is
found to be synchronized with the rotation period of the host star, and the
system is found to be relatively active, possibly revealing a star--brown dwarf
interaction. All these findings suggest that the system's formation history
might be explained via disc fragmentation and later migration to close-in
orbits. If the system is found to be unstable, TOI-263 is an excellent target
to test the migration mechanisms before the brown dwarf becomes engulfed by its
parent star.Comment: Accepted for Publication in Astronomy and Astrophysic
Detection of He I \AA{} absorption on HD 189733 b with CARMENES high-resolution transmission spectroscopy
We present three transit observations of HD 189733 b obtained with the
high-resolution spectrograph CARMENES at Calar Alto. A strong absorption signal
is detected in the near-infrared He I triplet at 10830 \AA{} in all three
transits. During mid-transit, the mean absorption level is %
measured in a 10 km s range at a net blueshift of km
s (10829.84--10830.57 \AA{}). The absorption signal exhibits radial
velocities of km s and km s during
ingress and egress, respectively; measured in the planetary rest frame. We show
that stellar activity related pseudo-signals interfere with the planetary
atmospheric absorption signal. They could contribute as much as 80% of the
observed signal and might also affect the radial velocity signature, but
pseudo-signals are very unlikely to explain the entire signal. The observed
line ratio between the two unresolved and the third line of the He I triplet is
, which strongly deviates from the value expected for an optically
thin atmospheres. When interpreted in terms of absorption in the planetary
atmosphere, this favors a compact helium atmosphere with an extent of only 0.2
planetary radii and a substantial column density on the order of cm. The observed radial velocities can be understood either in
terms of atmospheric circulation with equatorial superrotation or as a sign of
an asymmetric atmospheric component of evaporating material. We detect no clear
signature of ongoing evaporation, like pre- or post-transit absorption, which
could indicate material beyond the planetary Roche lobe, or radial velocities
in excess of the escape velocity. These findings do not contradict planetary
evaporation, but only show that the detected helium absorption in HD 189733 b
does not trace the atmospheric layers that show pronounced escape signatures.Comment: 13 pages, 12 figures, accepted for publication in A&
Dynamical masses of two young transiting sub-Neptunes orbiting HD 63433
Although the number of exoplanets reported in the literature exceeds 5000 so
far, only a few dozen of them are young planets (900 Myr). However, a
complete characterization of these young planets is key to understanding the
current properties of the entire population. Hence, it is necessary to
constrain the planetary formation processes and the timescales of dynamical
evolution by measuring the masses of exoplanets transiting young stars. We
characterize and measure the masses of two transiting planets orbiting the 400
Myr old solar-type star HD\,63433, which is a member of the Ursa Major moving
group. We analysed precise photometric light curves of five sectors of the TESS
mission with a baseline of 750 days and obtained 150 precise radial
velocity measurements with the visible and infrared arms of the CARMENES
instrument at the Calar Alto 3.5 m telescope in two different campaigns of
500 days. We performed a combined photometric and spectroscopic analysis
to retrieve the planetary properties of two young planets. The strong stellar
activity signal was modelled by Gaussian regression processes. We have updated
the transit parameters of HD\,63433\,b and c and obtained planet radii of
R\,=\,2.140\,\,0.087 R and R\,=\,2.692\,\,0.108
R. Our analysis allowed us to determine the dynamical mass of the
outer planet with a 4 significance (\,=\,15.54\,\,3.86
M) and set an upper limit on the mass of the inner planet at 3
(\,\,21.76 M). According to theoretical models, both planets
are expected to be sub-Neptunes, whose interiors mostly consist of silicates
and water with no dominant composition of iron, and whose gas envelopes are
lower than 2\% in the case of HD\,63433\,c. The envelope is unconstrained in
HD\,63433\,b
- …