164 research outputs found

    The 3-Dimensional Structure of HH 32 from GMOS IFU Spetroscopy

    Full text link
    We present new high resolution spectroscopic observations of the Herbig-Haro object HH 32 from System Verification observations made with the GMOS IFU at Gemini North Observatory. The 3D spectral data covers a 8''.7 x 5''.85 spatial field and 4820 - 7040 Angstrom spectral region centered on the HH~32 A knot complex. We show the position-dependent line profiles and radial velocity channel maps of the Halpha line, as well as line ratio velocity channel maps of [OIII]5007/Halpha, [OI]6300/Halpha, [NII]6583/Halpha, [SII](6716+6730)/Halpha and [SII]6716/6730. We find that the line emission and the line ratios vary significantly on spatial scales of ~1'' and over velocities of ~50 km/s. A ``3/2-D'' bow shock model is qualitatively successful at reproducing the general features of the radial velocity channel maps, but it does not show the same complexity as the data and it fails to reproduce the line ratios in our high spatial resolution maps. The observations of HH 32 A show two or three superimposed bow shocks with separations of ~3'', which we interpret as evidence of a line of sight superposition of two or three working surfaces located along the redshifted body of the HH 32 outflow.Comment: Accepted for Publication in the Astronomical Journal (January 2004

    Jet-Induced Nucleosynthesis in Misaligned Microquasars

    Get PDF
    The jet axes and the orbital planes of microquasar systems are usually assumed to be approximately perpendicular, eventhough this is not currently an observational requirement. On the contrary, in one of the few systems where the relative orientations are well-constrained, V4641Sgr, the jet axis is known to lie not more than ~36 degrees from the binary plane. Such a jet, lying close to the binary plane, and traveling at a significant fraction of the speed of light may periodically impact the secondary star initiating nuclear reactions on its surface. The integrated yield of such nuclear reactions over the age of the binary system (less the radiative mass loss) will detectably alter the elemental abundances of the companion star. This scenario may explain the anomalously high Li enhancements (roughly ~20-200 times the sun's photospheric value; or, equivalently, 0.1-1 times the average solar system value) seen in the companions of some black-hole X-ray binary systems. (Such enhancements are puzzling since Li nuclei are exceedingly fragile - being easily destroyed in the interiors of stars - and Li would be expected to be depleted rather than enhanced there.) Gamma-ray line signatures of the proposed process could include the 2.22 MeV neutron capture line as well as the 0.478 MeV 7Li* de-excitation line, both of which may be discernable with the INTEGRAL satellite if produced in an optically thin region during a large outburst. For very energetic jets, a relatively narrow neutral pion gamma-decay signature at 67.5 MeV could also be measurable with the GLAST satellite. We argue that about 10-20% of all microquasar systems ought to be sufficiently misaligned as to be undergoing the proposed jet-secondary impacts.Comment: ApJ, accepted. Includes referee's suggestions and some minor clarifications over previous versio

    The Eastern Filament of W50

    Full text link
    We present new spectral (FPI and long-slit) data on the Eastern optical filament of the well known radionebula W50 associated with SS433. We find that on sub-parsec scales different emission lines are emitted by different regions with evidently different physical conditions. Kinematical properties of the ionized gas show evidence for moderately high (V ~ 100 km/s) supersonic motions. [OIII]5007 emission is found to be multi-component and differs from lower-excitation [SII]6717 line both in spatial and kinematical properties. Indirect evidence for very low characteristic densities of the gas (n ~ 0.1cm^{-3}) is found. We propose radiative (possibly incomplete) shock waves in low-density, moderately high metallicity gas as the most probable candidate for the power source of the optical filament. Apparent nitrogen over-abundance is better understood if the location of W50 in the Galaxy is taken into account.Comment: accepted to Astronomische Nachrichten; 9 pages, 4 figures, 2 table

    Enigma of ultraluminous X-ray sources may be resolved by 3D-spectroscopy (MPFS data)

    Full text link
    The ultraluminous X-ray sources (ULXs) were isolated in external galaxies for the last 5 years. Their X-ray luminosities exceed 100-10000 times those of brightest Milky Way black hole binaries and they are extremely variable. There are two models for the ULXs, the best black hole candidates. 1. They are supercritical accretion disks around a stellar mass black hole like that in SS433, observed close to the disk axes. 2. They are Intermediate Mass Black Holes (of 100-10000 solar masses). Critical observations which may throw light upon the ULXs nature come from observations of nebulae around the ULXs. We present results of 3D-spectroscopy of nebulae around several ULXs located in galaxies at 3-6 Mpc distances. We found that the nebulae to be powered by their central black holes. The nebulae are shocked and dynamically perturbed probably by jets. The nebulae are compared with SS433 nebula (W50).Comment: Proceedings of the ESO and Euro3D Workshop "Science Perspectives for 3D Spectroscopy", Garching (Germany), October 10-14, 2005. M. Kissler-Patig, M.M. Roth and J.R. Walsh (eds.

    Understanding ULX Nebulae in the Framework of Supercritical Accretion

    Full text link
    For a long time, the well-known supercritically accreting binary SS433 is being proposed as a prototype for a class of hypothetical bright X-ray sources that may be identified with the so-called Ultraluminous X-ray sources (ULXs) in nearby galaxies or at least with part of them. Like SS433, these objects should be associated with optical nebulae, powered by both radiation of the central source and its wind or jet activity. Indeed, around many ULXs, bright optical nebulae (ULX Nebulae, ULXNe) are found. Here, we use SS433 as a prototype for the power source creating the nebulae around ULXs. Though many factors are important such as the structure of the host star-forming region and the possible supernova remnant formed together with the accreting compact object, we show that most of the properties of ULXNe may be explained by an SS433-like system evolving for up to about one million years in a constant density environment. The basic stages of evolution of a ULX Nebula include a non-spherical HII-region with a central cavity created by non-radiative shock waves, an elongated or bipolar shock-powered nebula created by jet activity and a large-scale quasi-spherical bubble.Comment: 23 pages, 7 figures; accepted for publication by New Astronom

    Discovery of New Interacting Supernova Remnants in the Inner Galaxy

    Full text link
    OH(1720 MHz) masers are excellent signposts of interaction between supernova remnants(SNRs) and molecular clouds. Using the GBT and VLA we have surveyed 75 SNRs and six candidates for maser emission. Four new interacting SNRs are detected with OH masers: G5.4-1.2, G5.7-0.0, G8.7-0.1 and G9.7-0.0. The newly detected interacting SNRs G5.7-0.0 and G8.7-0.1 have TeV gamma-ray counterparts which may indicate a local cosmic ray enhancement. It has been noted that maser-emitting SNRs are preferentially distributed in the Molecular Ring and Nuclear Disk. We use the present and existing surveys to demonstrate that masers are strongly confined to within 50 degrees Galactic longitude at a rate of 15 percent of the total SNR population. All new detections are within 10 degrees Galactic longitude emphasizing this trend. Additionally, a substantial number of SNR masers have peak fluxes at or below the detection threshold of existing surveys. This calls into question whether maser surveys of Galactic SNRs can be considered complete and how many maser-emitting remnants remain to be detected in the Galaxy.Comment: Accepted to ApJ Letters, with 2 figures and 2 table

    The Physical Parameters of the Micro-quasar S26 in the Sculptor Group Galaxy NGC 7793

    Get PDF
    NGC 7793 - S26 is an extended source (350 pc ×\times 185 pc) previously studied in the radio, optical and x-ray domains. It has been identified as a micro-quasar which has inflated a super bubble. We used Integral Field Spectra from the Wide Field Spectrograph on the ANU 2.3 m telescope to analyse spectra between 3600--7000 \AA. This allowed us to derive fluxes and line ratios for selected nebular lines. Applying radiative shock model diagnostics, we estimate shock velocities, densities, radiative ages and pressures across the object. We show that S26 is just entering its radiative phase, and that the northern and western regions are dominated by partially-radiative shocks due to a lower density ISM in these directions. We determine a velocity of expansion along the jet of 330 km s1^{-1}, and a velocity of expansion of the bubble in the minor axis direction of 132 km s1^{-1}. We determine the age of the structure to be 4.1×1054.1\times10^5 yr, and the jet energy flux to be (410)×1040 (4-10)\times10^{40} erg s1^{-1} The jet appears to be collimated within 0.25\sim0.25 deg, and to undergo very little precession. If the relativistic β1/3\beta \sim 1/3, then some 4 M_{\odot} of relativistic matter has already been processed through the jet. We conclude that the central object in S26 is probably a Black Hole with a mass typical of the ultra-luminous X-ray source population which is currently consuming a fairly massive companion through Roche Lobe accretion.Comment: Accepted for publication in MNRAS; 12 pages, 7 figures and 3 table

    Spectrophotometry of interstellar absorption bands

    Get PDF
    corecore