503 research outputs found

    Sign language recognition using wearable electronics: Implementing K-nearest neighbors with dynamic time warping and convolutional neural network algorithms

    Get PDF
    We propose a sign language recognition system based on wearable electronics and two different classification algorithms. The wearable electronics were made of a sensory glove and inertial measurement units to gather fingers, wrist, and arm/forearm movements. The classifiers were k-Nearest Neighbors with Dynamic Time Warping (that is a non-parametric method) and Convolutional Neural Networks (that is a parametric method). Ten sign-words were considered from the Italian Sign Language: cose, grazie, maestra, together with words with international meaning such as google, internet, jogging, pizza, television, twitter, and ciao. The signs were repeated one-hundred times each by seven people, five male and two females, aged 29–54 y ± 10.34 (SD). The adopted classifiers performed with an accuracy of 96.6% ± 3.4 (SD) for the k-Nearest Neighbors plus the Dynamic Time Warping and of 98.0% ± 2.0 (SD) for the Convolutional Neural Networks. Our system was made of wearable electronics among the most complete ones, and the classifiers top performed in comparison with other relevant works reported in the literature

    Evidence of random magnetic anisotropy in ferrihydrite nanoparticles based on analysis of statistical distributions

    Full text link
    We show that the magnetic anisotropy energy of antiferromagnetic ferrihydrite depends on the square root of the nanoparticles volume, using a method based on the analysis of statistical distributions. The size distribution was obtained by transmission electron microscopy, and the anisotropy energy distributions were obtained from ac magnetic susceptibility and magnetic relaxation. The square root dependence corresponds to random local anisotropy, whose average is given by its variance, and can be understood in terms of the recently proposed single phase homogeneous structure of ferrihydrite.Comment: 6 pages, 2 figure

    Bamboo reinforced concrete: a critical review

    Get PDF
    © 2018, The Author(s). The use of small diameter whole-culm (bars) and/or split bamboo (a.k.a. splints or round strips) has often been proposed as an alternative to relatively expensive reinforcing steel in reinforced concrete. The motivation for such replacement is typically cost—bamboo is readily available in many tropical and sub-tropical locations, whereas steel reinforcement is relatively more expensive—and more recently, the drive to find more sustainable alternatives in the construction industry. This review addresses such ‘bamboo-reinforced concrete’ and assesses its structural and environmental performance as an alternative to steel reinforced concrete. A prototype three bay portal frame, that would not be uncommon in regions of the world where bamboo-reinforced concrete may be considered, is used to illustrate bamboo reinforced concrete design and as a basis for a life cycle assessment of the same. The authors conclude that, although bamboo is a material with extraordinary mechanical properties, its use in bamboo-reinforced concrete is an ill-considered concept, having significant durability, strength and stiffness issues, and does not meet the environmentally friendly credentials often attributed to it

    Wood in buildings: the right answer to the wrong question

    Get PDF
    Reducing the embodied emissions of materials for new construction and renovation of buildings is a key challenge for climate change mitigation around the world. However, as simply reducing emissions is not sufficient to meet the climate targets, using bio-based materials seems the only feasible choice as it permits carbon storage in buildings. Various studies have shown that bio-based materials allow turning overall life cycle impacts negative, therefore, having a cooling effect on the climate. In recent years, scholars and policy makers have focused almost exclusively on the advancement of wooden buildings. Timber structures stand out as they can be prefabricated and used for high-rise buildings. Yet, one important aspect seems to be overlooked: the consideration of supply and demand. Large forest areas that allow sustainable sourcing of woody biomass only exist in the Northern hemisphere, notably in North America and Europe. In these regions, though, urbanization rates are mostly stagnating, meaning new construction rates are low. The largest amount of material requirements in these regions are derived from the refurbishment of the existing stock. Moreover, in areas where structural material is needed for new construction, in Asia, Africa and South America, rain forests need to be protected. Therefore, we need to rethink the desire to find one solution and carelessly implement it everywhere. Instead, we need to consider locally available material and know-how for grounded material choices. This paper explores the supply of a range of bio-based materials and matches it against the material demand of global building stocks. It is based on various previous studies by the authors, of South Africa, China, Portugal, and more. The analysis divides between structural materials for new construction, such as wood and bamboo, and thermal insulation materials for the refurbishment of existing buildings, such as straw and hemp. The results emphasize the need for diversifying bio-based material solutions

    Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2021

    Get PDF
    The 9th biennial conference titled “Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases” was hosted virtually, due to the ongoing COVID-19 pandemic, in collaboration with the University of Vermont Larner College of Medicine, the National Heart, Lung, and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, and the International Society for Cell & Gene Therapy. The event was held from July 12th through 15th, 2021 with a pre-conference workshop held on July 9th. As in previous years, the objectives remained to review and discuss the status of active research areas involving stem cells (SCs), cellular therapeutics, and bioengineering as they relate to the human lung. Topics included 1) technological advancements in the in situ analysis of lung tissues, 2) new insights into stem cell signaling and plasticity in lung remodeling and regeneration, 3) the impact of extracellular matrix in stem cell regulation and airway engineering in lung regeneration, 4) differentiating and delivering stem cell therapeutics to the lung, 5) regeneration in response to viral infection, and 6) ethical development of cell-based treatments for lung diseases. This selection of topics represents some of the most dynamic and current research areas in lung biology

    Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes

    Get PDF
    In Portugal, due to the combination of climatological and ecological factors, large wildfires are a constant threat and due to their economic impact, a big policy issue. In order to organize efficient fire fighting capacity and resource management, correct quantification of the risk of large wildfires are needed. In this paper, we quantify the regional risk of large wildfire sizes, by fitting a Generalized Pareto distribution to excesses over a suitably chosen high threshold. Spatio-temporal variations are introduced into the model through model parameters with suitably chosen link functions. The inference on these models are carried using Bayesian Hierarchical Models and Markov chain Monte Carlo methods

    Expression of CD3-ζ on T-cells in primary cervical carcinoma and in metastasis-positive and -negative pelvic lymph nodes

    Get PDF
    Lymphocytic infiltrate is often present in cervical cancer lesions, possibly reflecting an ongoing, but ineffective, immune response to the tumour. Recently, evidence has accumulated for systemically impaired T-cell functions in cancer patients, associated with decreased expression of signal-transducing zeta (ζ) chain dimer molecules on circulating T-cells and NK-cells. Here, we report on the intralesional down-regulation of ζ chain expression on T-cells in cervical carcinoma. Paraffin-embedded or snap-frozen sections from 24 different cervical cancer specimens were studied. Paraffin-embedded tumour-positive (n = 7) and tumour-negative (n = 15) pelvic lymph nodes were also included in the study. Immunostaining was performed on consecutive sections with antibodies specific for CD3-ɛ or the CD3-associated ζ chain dimer. Antigen retrieval by sodium citrate/microwave treatment was essential for ζ staining of paraffin sections. The amount of ζ positive cells was quantitated and related to the number of CD3-ɛ+ cells in corresponding tumour areas. Of the 24 cervical cancer specimens studied, ζ chain dimer expression was reduced in seven cases and strongly reduced in the other 17 samples. In tonsil control sections, CD3-ɛ and CD3-ζ were always co-expressed in almost equal numbers. Also, both tumour-negative and -positive lymph nodes showed ζ chain expression which equalled that of CD3-ɛ expression. These data indicate that a decreased expression of signal-transducing ζ molecules on tumour-infiltrating T-cells is frequent in cervical cancer. The apparently unimpaired ζ chain expression within draining lymph nodes suggests that local tumour-derived factors at the primary site are instrumental in ζ chain down-regulation. © 1999 Cancer Research Campaig
    • 

    corecore