22 research outputs found

    Critical practice of grant application and administration: an intervention

    Get PDF
    Introduction: Researchers experience increasing pressures to connect with bodies that finance their projects. In this climate, critical scholars face many obstacles as they seek to navigate the treacherous waters of securing external funds. To debate these challenges, the ACME Editorial Collective organized a panel for the 2009 Annual Meeting of the Association of American Geographers in Las Vegas. This intervention represents a follow-up discussion and collective writing process among some of the panelists and members of the audience who attended the panel. Below, we examine the neoliberalization of the current funding systems, discuss the implications for research practice, and make suggestions for critical engagement and transformation. Our suggestions, however, will not be easy to implement, as we can infer from the experience of the radical scholars of the post-1968 generation whose ascension into the upper echelons of North American and European university systems was also associated with the neoliberalization of the funding systems. This intervention represents a modest contribution in the tradition of critical research practice of creating the possibilities for progressive change

    Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE

    Get PDF
    This study was funded by the WSL-internal COSMIC project (5233.00148.001.01), the ETHZ (Laboratory of Ion Beam Physics), the Swiss National Science Foundation (SNF Grant 200021L_157187/1), and as the Czech Republic Grant Agency project no. 17-22102s.Though tree-ring chronologies are annually resolved, their dating has never been independently validated at the global scale. Moreover, it is unknown if atmospheric radiocarbon enrichment events of cosmogenic origin leave spatiotemporally consistent fingerprints. Here we measure the 14C content in 484 individual tree rings formed in the periods 770–780 and 990–1000 CE. Distinct 14C excursions starting in the boreal summer of 774 and the boreal spring of 993 ensure the precise dating of 44 tree-ring records from five continents. We also identify a meridional decline of 11-year mean atmospheric radiocarbon concentrations across both hemispheres. Corroborated by historical eye-witness accounts of red auroras, our results suggest a global exposure to strong solar proton radiation. To improve understanding of the return frequency and intensity of past cosmic events, which is particularly important for assessing the potential threat of space weather on our society, further annually resolved 14C measurements are needed.Publisher PDFPeer reviewe

    Stand Structure and Composition Affect the Drought Sensitivity of Oregon White Oak (<em>Quercus garryana</em> Douglas ex Hook.) and Douglas-Fir (<em>Pseudotsuga menziesii</em> (Mirb.) Franco)

    No full text
    Due to a suite of environmental changes, Oregon white oak (Quercus garryana Douglas ex Hook; called Gary oak in Canada) associated ecosystems at many North American sites are being encroached upon by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) and other conifer species. Alteration of stand structure and composition is causing substantial changes in the dynamics of these ecosystems, creating an environment in which Oregon white oak is not thriving. In this study we used dendrochronology to investigate the competitive dynamics between Oregon white oak and Douglas-fir in a mixed forest stand on Southern Vancouver Island. Significant species-specific differences in radial growth sensitivity to drought were found between Oregon white oak and Douglas-fir. Oregon white oak trees growing at high densities, or competing with Douglas-fir for moisture were found to be more sensitive to drought and more sensitive to growing conditions during the prior year. The response of Douglas-fir to drought was less variable, possibly due to the relatively low conifer densities at our study site, as well as the species’ ability to root graft, its higher shade tolerance than Oregon white oak, and its rapid growth rates that allow it to achieve a more dominant canopy position. The non-stationary response to climate exhibited by Oregon white oak provides insights into the mechanisms by which Oregon white oak savannas are being converted to coniferous woodland, but also suggest that tree-ring reconstructions of climate need to explicitly address changes in stand dynamics that could influence the growth–climate relationshi

    Exotic Grasses Reduce Infiltration and Moisture Availability in a Temperate Oak Savanna

    No full text
    Biological invasions represent one of the most urgent conservation challenges. Oregon white oak (Quercus garryana) savannas, a complex of grassland and transitional forest, are especially sensitive to these invasions. These ecosystems have been severely degraded and fragmented over the past century and are being encroached by conifers, and oak seedlings are failing to emerge from the understory at many locations. Understanding competitive interactions between Oregon white oak and associated native and exotic vegetation would provide insight into forest-grassland dynamics and the role of exotic grasses in the decline of native species, the processes that maintain temperate savanna ecosystems, and the role of soil water uptake by individual savanna species in contributing to overall species assemblages. In this study, we quantified the soil moisture budget for invaded and uninvaded oak-associated ecosystems. From February to October 2007 we used a split paired plot experiment in Duncan, British Columbia, Canada to measure soil moisture on treatment sites where exotic grasses were removed with herbicide and control plots where they were not, using three depths (5, 20, and 35 or 50 cm) in the soil profile. Our results show that the plots that contained exotic vegetation had a faster rate of soil drying following precipitation events at the 5 cm depth than plots with the predominantly native species. We attribute this difference to the capacity of exotic vegetation to exploit soil moisture more rapidly than native vegetation at times of the year when native vegetation cannot. These results provide insight into one mechanism by which exotic grasses affect associated native plants and could help guide restoration efforts

    Soil properties as constraints to seedling regeneration beyond alpine treelines in the Canadian Rocky Mountains

    No full text
    Plants growing at the edges of their range limits are expected to be particularly sensitive to changes in precipitation and temperature regimes associated with climatic change. However, non-climatic factors are increasingly recognized as important constraints to species’ range expansions. Therefore, we assessed the effects of soil provenance with respect to the alpine treeline on the germination, growth, and survival of Engelmann spruce (Picea engelmannii) seedlings. Seedlings were grown under controlled conditions in a growth chamber and greenhouse for ninety days in soils collected from four treeline ecotones in the Canadian Rocky Mountains. By controlling seed source and climatic conditions, and eliminating competition and predation, we attribute differences in seedling viability to soil properties that differed across elevation zones and individual treeline sites. Overall, alpine soils originating from beyond the species’ current elevational range were least amenable to growth, and there was some indication of reduced germination and survival in high-elevation soils. Forest soils, which were coarser and more nutrient rich, hosted seedlings with greater above- and below-ground biomass. Thus, the physical and chemical characteristics of alpine soils in our study region may constrain future treeline expansion, underscoring the importance of incorporating soil properties when considering species’ distributions under climate change

    Satellite-Observed Soil Moisture as an Indicator of Wildfire Risk

    No full text
    Wildfires are a concerning issue in Canada due to their immediate impact on people&rsquo;s lives, local economy, climate, and environment. Studies have shown that the number of wildfires and affected areas in Canada has increased during recent decades and is a result of a warming and drying climate. Therefore, identifying potential wildfire risk areas is increasingly an important aspect of wildfire management. The purpose of this study is to investigate if remotely sensed soil moisture products from the Soil Moisture and Ocean Salinity (SMOS) satellite can be used to identify potential wildfire risk areas for better wildfire management. We used the National Fire Database (NFDB) fire points and polygons to group the wildfires according to ecozone classifications, as well as to analyze the SMOS soil moisture data over the wildfire areas, between 2010&ndash;2017, across fourteen ecozones in Canada. Timeseries of 3-day, 5-day, and 7-day soil moisture anomalies prior to the onset of each wildfire occurrence were examined over the ecozones individually. Overall, the results suggest, despite the coarse-resolution, SMOS soil moisture products are potentially useful in identifying soil moisture anomalies where wildfire hot-spots may occur

    Soil properties as constraints to seedling regeneration beyond alpine treelines in the Canadian Rocky Mountains

    No full text
    <p>Plants growing at the edges of their range limits are expected to be particularly sensitive to changes in precipitation and temperature regimes associated with climatic change. However, non-climatic factors are increasingly recognized as important constraints to species’ range expansions. Therefore, we assessed the effects of soil provenance with respect to the alpine treeline on the germination, growth, and survival of Engelmann spruce (<i>Picea engelmannii</i>) seedlings. Seedlings were grown under controlled conditions in a growth chamber and greenhouse for ninety days in soils collected from four treeline ecotones in the Canadian Rocky Mountains. By controlling seed source and climatic conditions, and eliminating competition and predation, we attribute differences in seedling viability to soil properties that differed across elevation zones and individual treeline sites. Overall, alpine soils originating from beyond the species’ current elevational range were least amenable to growth, and there was some indication of reduced germination and survival in high-elevation soils. Forest soils, which were coarser and more nutrient rich, hosted seedlings with greater above- and below-ground biomass. Thus, the physical and chemical characteristics of alpine soils in our study region may constrain future treeline expansion, underscoring the importance of incorporating soil properties when considering species’ distributions under climate change.</p

    Areas of agreement and disagreement in the projected potential distribution of <i>Miscanthus sacchariflorus</i> and <i>M. sinensis</i> (all area classified as suitable, favourable, and highly favourable, or EI >10) as modeled by CLIMEX.

    No full text
    <p>The upper model shows areas of agreement between the BCM and CGCM models for a given scenario and year. The lower panel shows areas of agreement between the A2 and B1 scenarios for a given model and year. Areas shown in blue indicate suitable climate under both projections; areas shown in red indicate that only one of the two projections predicts suitable climate.</p
    corecore