31 research outputs found

    The distance to the young cluster NGC 7129 and its age

    Full text link
    The dust cloud TGU H645 P2 and embedded in it young open cluster NGC 7129 are investigated using the results of medium-band photometry of 159 stars in the Vilnius seven-colour system down to V = 18.8 mag. The photometric data were used to classify about 50 percent of the measured stars in spectral and luminosity classes. The extinction A_V vs. distance diagram for the 20x20 arcmin area is plotted for 155 stars with two-dimensional classification from the present and the previous catalogues. The extinction values found range between 0.6 and 3.4 mag. However, some red giants, located in the direction of the dense parts of the cloud, exhibit the infrared extinction equivalent up to A_V = 13 mag. The distance to the cloud (and the cluster) is found to be 1.15 kpc (the true distance modulus 10.30 mag). For determining the age of NGC 7129, a luminosity vs. temperature diagram for six cluster members of spectral classes B3 to A1 was compared with the Pisa pre-main-sequence evolution tracks and the Palla birthlines. The cluster can be as old as about 3 Myr, but star forming continues till now as witnessed by the presence in the cloud of many younger pre-main-sequence objects identified with photometry from 2MASS, Spitzer and WISE infrared surveys.Comment: 8 pages, 6 fugures, full Table 1 online. Accepted for publication in MNRAS on 2013 November 3

    Stellar tracers of the Cygnus Arm. II: A young open cluster in Cam OB3

    Full text link
    Cam OB3 is the only defined OB association believed to belong to the Outer Galactic Arm or Cygnus Arm. Very few members have been observed and the distance modulus to the association is not well known. We attempt a more complete description of the population of Cam OB3 and a better determination of its distance modulus. We present uvby photometry of the area surrounding the O-type stars BD +56 864 and LS I +57 138, finding a clear sequence of early-type stars that define an uncatalogued open cluster, which we call Alicante 1. We also present spectroscopy of stars in this cluster and the surrounding association. From the spectral types for 18 very likely members of the association and UBV photometry found in the literature, we derive individual reddenings, finding a extinction law close to standard and an average distance modulus DM=13.0+-0.4. This value is in excellent agreement with the distance modulus to the new cluster Alicante 1 found by fitting the photometric sequence to the ZAMS. In spite of the presence of several O-type stars, Alicante 1 is a very sparsely populated open cluster, with an almost total absence of early B-type stars. Our results definitely confirm Cam OB3 to be located on the Cygnus Arm and identify the first open cluster known to belong to the association.Comment: Accepted for publication in Astronomy & Astrophysics. Tables 7 & 8 to appear only in electronic forma

    Measurement of the Surface Gravity of η\eta Boo

    Full text link
    Direct angular size measurements of the G0IV subgiant η\eta Boo from the Palomar Testbed Interferometer are presented, with limb-darkened angular size of θLD=2.18940.0140+0.0055\theta_{LD}= 2.1894^{+0.0055}_{-0.0140} mas, which indicate a linear radius of R=2.672±0.028RR=2.672 \pm 0.028 R_\odot. A bolometric flux estimate of FBOL=22.1±0.28×107F_{BOL} = 22.1 \pm 0.28\times 10^{-7} erg cm2^{-2}s1^{-1} is computed, which indicates an effective temperature of TEFF=6100±28T_{EFF}=6100 \pm 28 K and luminosity of L=8.89±0.16LL = 8.89 \pm 0.16 L_\odot for this object. Similar data are established for a check star, HD 121860. The η\eta Boo results are compared to, and confirm, similar parameters established by the {\it MOST} asteroseismology satellite. In conjunction with the mass estimate from the {\it MOST} investigation, a surface gravity of logg=3.817±0.016\log g=3.817 \pm 0.016 [cm s2^{-2}] is established for η\eta Boo.Comment: To appear in March 1, 2007 ApJ v657 n

    Optical photometry and spectral classification in the field of the open cluster NGC 6996 in the North America Nebula

    Full text link
    We present and discuss broad band CCD UBV(I)CUBV(I)_C photometry and low resolution spectroscopy for stars in the region of the open cluster NGC 6996, located in the North America Nebula. The new data allow us to tightly constrain the basic properties of this object. We revise the cluster size, which in the past has been significantly underestimated. The width of the Main Sequence is mainly interpreted in terms of differential reddening, and indeed the stars' color excess EBVE_{B-V} ranges from 0.43 to 0.65, implying the presence of a significant and evenly distributed dust component. We cross-correlate our optical photometry with near infrared from 2MASS, and by means of spectral classification we are able to build up extinction curves for an handful of bright members. We find that the reddening slope and the total to selective absorption ratio RVR_V toward NGC 6996 are anomalous. Moreover the reddening corrected colors and magnitudes allow us to derive estimates for the cluster distance and age, which turn out to be 760±70pc760 \pm 70 pc (V0MV=9.4±0.2V_{0}-M_{V} = 9.4 \pm 0.2) and 350\sim 350 Myr, respectively. Basing on our results, we suggest that NGC 6996 is located in front of the North America Nebula, and does not seem to have any apparent relationship with it.Comment: 19 pages, 12 eps figures, in press in A&

    The effect of HII regions on rotation measure of pulsars

    Get PDF
    We have obtained new rotation measure for 11 pulsars observed with the Effelsberg 100-m radio telescope, in the direction of the Perseus arm. Using a combination of 34 published and the 11 newly measured pulsar rotation measures we study the magnetic field structure towards the Perseus arm. We find that two pulsars towards l\sim 149^{\circ} (Region 1) and four pulsars towards l113\sim113^{\circ} (Region 2) lie behind HII regions which seriously affects the pulsar rotation measures. The rotation measure of PSR J2337+6151 seem to be affected by its passage through the supernova remnant G114.3+0.3. For Region 1, we are able to constrain the random component of the magnetic field to 5.7μ5.7\muG. For the large-scale component of the Galactic magnetic field we determine a field strength of 1.7±1.0μ1.7\pm1.0\muG. This average field is constant on Galactic scales lying within the Galactic longitude range of 85<85^{\circ} < l <240 < 240^{\circ} and we find no evidence for large scale field reversal upto 5-6 kpc. We highlight the great importance to include the effects of foreground emission in any systematic study.Comment: Replaced by the printed version in Astronomy and Astrophysics and includes erratum and new referenc

    The Palomar Testbed Interferometer Calibrator Catalog

    Get PDF
    The Palomar Testbed Interferometer (PTI) archive of observations between 1998 and 2005 is examined for objects appropriate for calibration of optical long-baseline interferometer observations - stars that are predictably point-like and single. Approximately 1,400 nights of data on 1,800 objects were examined for this investigation. We compare those observations to an intensively studied object that is a suitable calibrator, HD217014, and statistically compare each candidate calibrator to that object by computing both a Mahalanobis distance and a Principal Component Analysis. Our hypothesis is that the frequency distribution of visibility data associated with calibrator stars differs from non-calibrator stars such as binary stars. Spectroscopic binaries resolved by PTI, objects known to be unsuitable for calibrator use, are similarly tested to establish detection limits of this approach. From this investigation, we find more than 350 observed stars suitable for use as calibrators (with an additional 140\approx 140 being rejected), corresponding to 95\gtrsim 95% sky coverage for PTI. This approach is noteworthy in that it rigorously establishes calibration sources through a traceable, empirical methodology, leveraging the predictions of spectral energy distribution modeling but also verifying it with the rich body of PTI's on-sky observations.Comment: 100 pages, 7 figures, 7 tables; to appear in the May 2008ApJS, v176n

    Single-lens mass measurement in the high-magnification microlensing event Gaia 19bld located in the Galactic disc

    Get PDF
    CONTEXT: Microlensing provides a unique opportunity to detect non-luminous objects. In the rare cases that the Einstein radius θ_{E} and microlensing parallax π_{E} can be measured, it is possible to determine the mass of the lens. With technological advances in both ground- and space-based observatories, astrometric and interferometric measurements are becoming viable, which can lead to the more routine determination of θ_{E} and, if the microlensing parallax is also measured, the mass of the lens. AIMS: We present the photometric analysis of Gaia19bld, a high-magnification (A ≈ 60) microlensing event located in the southern Galactic plane, which exhibited finite source and microlensing parallax effects. Due to a prompt detection by the Gaia satellite and the very high brightness of I = 9.05 mag at the peak, it was possible to collect a complete and unique set of multi-channel follow-up observations, which allowed us to determine all parameters vital for the characterisation of the lens and the source in the microlensing event. METHODS: Gaia19bld was discovered by the Gaia satellite and was subsequently intensively followed up with a network of ground-based observatories and the Spitzer Space Telescope. We collected multiple high-resolution spectra with Very Large Telescope (VLT)/X-shooter to characterise the source star. The event was also observed with VLT Interferometer (VLTI)/PIONIER during the peak. Here we focus on the photometric observations and model the light curve composed of data from Gaia, Spitzer, and multiple optical, ground-based observatories. We find the best-fitting solution with parallax and finite source effects. We derived the limit on the luminosity of the lens based on the blended light model and spectroscopic distance. RESULTS: We compute the mass of the lens to be 1.13 ± 0.03 M_{⊙} and derive its distance to be 5.52_{−0.64}^{+0.35} kpc. The lens is likely a main sequence star, however its true nature has yet to be verified by future high-resolution observations. Our results are consistent with interferometric measurements of the angular Einstein radius, emphasising that interferometry can be a new channel for determining the masses of objects that would otherwise remain undetectable, including stellar-mass black holes
    corecore