45 research outputs found

    Satellites Detect Abatable Super-Emissions in One of the WorldÂżs Largest Methane Hotspot Regions

    Full text link
    [EN] Reduction of fossil fuel-related methane emissions has been identified as an essential means for climate change mitigation, but emission source identification remains elusive for most oil and gas production basins in the world. We combine three complementary satellite data sets to survey single methane emission sources on the west coast of Turkmenistan, one of the largest methane hotspots in the world. We found 29 different emitters, with emission rates >1800 kg/h, active in the 2017Âż2020 time period, although older satellite data show that this type of emission has been occurring for decades. We find that all sources are linked to extraction fields mainly dedicated to crude oil production, where 24 of them are inactive flares venting gas. The analysis of time series suggests a causal relationship between the decrease in flaring and the increase in venting. At the regional level, 2020 shows a substantial increase in the number of methane plume detections concerning previous years. Our results suggest that these large venting point sources represent a key mitigation opportunity as they emanate from human-controlled facilities, and that new satellite methods promise a revolution in the detection and monitoring of methane point emissions worldwide.The authors thank the team that realized the TROPOMI instrument and its data products, consisting of the partnership between Airbus Defense and Space Netherlands, KNMI, SRON, and TNO, commissioned by NSO and ESA. Sentinel-5 Precursor is part of the EU Copernicus program, Copernicus (modified) Sentinel-5P data (2018-2020) have been used. We thank the Sentinel Hub service for providing the EO Browser service. Thanks to the Environmental Defense Fund (EDF) for providing data about the O&G fields of the study area, and the Carbon Limits group for contributing to the verification of the emission sources. We thank the Italian Space Agency for the PRISMA data used in this work. Dr. Yongguang Zhang from the University of Nanjing is also thanked for his support to get access to ZY1 AHSI data, and Dr. Javier Gorrono from Universitat Politecnica de Valencia for his assistance in the uncertainty estimations. Authors Itziar Irakulis-Loitxate and Luis Guanter received funding from ESA Contract 4000134929.Irakulis-Loitxate, I.; Guanter-Palomar, LM.; Joannes D. Maasakkers; Daniel Zavala-Araiza; Ilse Aben (2022). Satellites Detect Abatable Super-Emissions in One of the WorldÂżs Largest Methane Hotspot Regions. Environmental Science & Technology (Online). 56(4):2143-2152. https://doi.org/10.1021/acs.est.1c048732143215256

    Quantification of methane emission rate from oil and gas wells in Romania using ground-based measurement techniques

    Get PDF
    The ROMEO campaign (ROmanian Methane Emissions from Oil and gas) focused on measurements of methane (CH4) emission rates from oil and natural gas (O&G) production in Romania. The campaign took place in October 2019 and covered the southern part of Romania around the cities Bucharest, Ploiesti, Pitesti, and Craiova. This study presents emission rates calculated from mobile in situ measurement of CH4 and wind measurements using the Other Test Method 33a from U.S. Environmental Protection Agency and the Gaussian Plume Method. These methods were used to determine emission rates from 112 O&G well sites and other production-related facilities. Estimated mean CH4 emission rate with a 95% confidence interval equals 0.49 [0.35, 0.71] kg CH4 h-1 per site; 10% of all quantified sites account for 56% of the estimated emission rates. In addition, more than 1,000 O&G sites were visited for a qualitative “screening” (CH4 detection without quantification). Analysis of the screening data shows that 65% of the sites emitted methane at detectable rates. The CH4 emission rates obtained during the ROMEO campaign are comparable to the methane emission rates in study carried out in other Romanian regions

    Methane Emissions from Process Equipment at Natural Gas Production Sites in the United States: Liquid Unloadings

    Get PDF
    Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21 000–35 000 scf methane (0.4–0.7 Mg) per event (95% confidence limits of 10 000–50 000 scf/event). For wells with plunger lifts, emissions averaged 1000–10 000 scf methane (0.02–0.2 Mg) per event (95% confidence limits of 500–12 000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190–400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings

    Short-term methane emissions from two dairy farms in California estimated by different measurement techniques and US Environmental Protection Agency inventory methodology: A case study

    Get PDF
    Atmospheric top-down measurements have attributed up to twice the methane (CH4) emissions of bottom-up (BU) inventories to dairy production. We explored this discrepancy by estimating CH4 emissions of two dairy facilities in California with U.S. Environmental Protection Agency (USEPA) methodology, which is used for BU inventories, and three independent measurement techniques: 1) open-path measurements with inverse dispersion modeling (hereafter “open-path”); 2) vehicle measurements with tracer flux ratio method; and 3) aircraft measurements with closed-path method. All three techniques estimated whole farm CH4 emissions during one week in the summer of 2016. In addition, open-path also estimated whole farm CH4 emissions during two months in the winter of 2017. The objectives of the present study were: 1) to compare the different techniques to measure whole farm CH4 emissions from dairies, 2) to estimate CH4 emissions from animal housing and liquid manure storage, and compare them to USEPA inventory estimates, and 3) to compare CH4 emissions between the two dairies. Whole farm CH4 estimates were similar among measurement techniques. No seasonality was detected for CH4 emissions from animal housing, but CH4 emissions from liquid manure storage were three to six times greater during the summer than during the winter. Open-path estimates for liquid manure storage emissions were similar to monthly USEPA estimates during the summer but not during the winter, and neither open-path estimates from summer nor winter were similar to the annual USEPA estimate. Thus, CH4 emissions need to be measured throughout the year to evaluate annual inventories. Methane yields from housing and liquid manure storage were used to compare emissions between the farms. While CH4 yields from animal housing were similar (on average 20.9 g CH4/kg dry matter intake), CH4 yields from liquid manure storage at one dairy were 1.7 and 3.5 times greater than at the other dairy during summer (234 vs. 137 g CH4/kg volatile solids [VS]) and winter (78 vs. 22 g CH4/kg VS), respectively. This greater CH4 yield was attributed to the greater proportion of manure stored in liquid form, which suggests that the promotion of manure management practices that reduce the amount of manure solids stored in liquid form, such as manure separators, could significantly reduce CH4 emissions from dairies. These results demonstrate that multiple techniques for monitoring emissions on these farms were comparable

    High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts

    Get PDF
    Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH4), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N2O), a long-lived greenhouse gas. Based on the belief that minimizing CH4 from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N2O emissions per hectare can be three times higher (33 kg-N2O⋅ha−1⋅season−1) than the maximum previously reported. Correlations between N2O emissions and management parameters suggest that N2O emissions from rice across the Indian subcontinent might be 30–45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N2O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N2O and CH4 emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N2O and CH4 emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term

    UNEPs International Methane Emissions Observatory (IMEO): Bringing together policy-relevant methane emissions data

    Get PDF
    The International Methane Emissions Observatory (IMEO) was launched in 2021 at the G20 summit by the United Nations Environment Program (UNEP). UNEP’s IMEO exists to provide open, reliable, public, policy-relevant data to facilitate actions to reduce methane emissions. UNEP, through IMEO, aims to fill gaps in knowledge and refine global understanding of the location and magnitude of methane emissions across different anthropogenic sectors

    High potential for CH4 emission mitigation from oil infrastructure in one of EU's major production regions

    Get PDF
    Ambitious methane (CH4) emission mitigation represents one of the most effective opportunities to slow the rate of global warming over the next decades. The oil and gas (O&G) sector is a significant source of methane emissions, with technically feasible and cost-effective emission mitigation options. Romania, a key O&G producer within the EU, with the second highest reported annual CH4 emissions from the energy sector in the year 2020 (Greenhouse Gas Inventory Data - Comparison by Category, 2022), can play an important role towards the EU's emission reduction targets. In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground- and drone-based measurement techniques. Measured emissions were characterized by heavily skewed distributions, with 10% of the sites accounting for more than 70% of total emissions. Integrating the results from all site-level quantifications with different approaches, we derive a central estimate of 5.4 kg h-1 per site of CH4 (3.6 %-8.4 %, 95% confidence interval) for oil production sites. This estimate represents the third highest when compared to measurementbased estimates of similar facilities from other production regions. Based on our results, we estimate a total of 120 kt CH4 yr-1 (range: 79-180 kt yr-1) from oil production sites in our studied areas in Romania. This is approximately 2.5 times higher than the reported emissions from the entire Romanian oil production sector for 2020. Based on the source-level characterization, up to three-quarters of the detected emissions from oil production sites are related to operational venting. Our results suggest that O&G production infrastructure in Romania holds a massive mitigation potential, specifically by implementing measures to capture the gas and minimize operational venting and leaks
    corecore