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ABSTRACT: Airborne measurements of methane emissions
from oil and gas infrastructure were completed over two regions
of Alberta, Canada. These top-down measurements were
directly compared with region-specific bottom-up inventories
that utilized current industry-reported flaring and venting
volumes (reported data) and quantitative estimates of
unreported venting and fugitive sources. For the 50 × 50 km
measurement region near Red Deer, characterized by natural gas
and light oil production, measured methane fluxes were more
than 17 times greater than that derived from directly reported
data but consistent with our region-specific bottom-up
inventory-based estimate. For the 60 × 60 km measurement
region near Lloydminster, characterized by significant cold
heavy oil production with sand (CHOPS), airborne measured
methane fluxes were five times greater than directly reported emissions from venting and flaring and four times greater than our
region-specific bottom up inventory-based estimate. Extended across Alberta, our results suggest that reported venting emissions
in Alberta should be 2.5 ± 0.5 times higher, and total methane emissions from the upstream oil and gas sector (excluding mined
oil sands) are likely at least 25−50% greater than current government estimates. Successful mitigation efforts in the Red Deer
region will need to focus on the >90% of methane emissions currently unmeasured or unreported.

■ INTRODUCTION

The Government of Canada has proposed new regulations
intended to deliver on its “commitment to reduce emissions of
methane from the oil and gas sector by 40−45% below 2012
levels by 2025”.1 The Province of Alberta is Canada’s largest
producer of fossil fuel resources, in 2015 accounting for 68% of
Canadian natural gas production,2 47% of light crude oil
production, and 80% of all crude oil and equivalent production
(i.e., crude oil, synthetic crude oil, crude bitumen, condensate,
and pentanes plus).3 Alberta has separately announced plans to
develop regulations to reduce methane emissions in the oil and
gas sector through a combination of new design standards,
improved measurement and reporting, and regulated stand-
ards.4 As of this writing, draft federal regulations are under
review, while Alberta’s proposed regulations are under active
development. Especially important questions for the success of
these regulations include the accuracy of the assumed baseline
methane emission estimates, the accuracy and completeness of
current reporting, and the nature and distribution of sources.

Uncertainty in true methane emission magnitudes, especially
from unreported and fugitive sources, complicates the
identification and implementation of the most effective
methane mitigation options. Several recent studies have
highlighted this challenge, where impacts of vented and leaked
methane can significantly increase the effective carbon intensity
of one fuel source relative to another.5−9 While much of the
recent focus in the literature has been on determining methane
emissions associated with hydraulically fractured natural gas
production,10−13 methane emissions are an important concern
across the entire upstream oil and gas sector.14−16

To date there have been few measurement studies of
methane emissions from oil and gas developments in Canada. A
notable exception is a very recent mobile survey study of
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natural gas developments in northeastern British Columbia,
Canada, which found that ∼47% of active wells emitted
detectable methane.17 Another recent study18 focused on
collecting detailed activity data (i.e., counts of pneumatic
equipment and numbers of leaks) across different regions in
Alberta. Moreover, some resources and operating practices in
the Canadian energy sector are unique in North America. Apart
from oil sands development, this includes production of heavy
oil resources in the Lloydminster region on the border between
Alberta and Saskatchewan as well as the Peace River area of
Alberta. Based on our analysis of production data as further
discussed below, we estimate that in 2016, heavy oil accounted
for 33% of conventional oil production in Alberta (i.e.,
excluding oil obtained through mined oil sands production).
The objectives of this study were to (i) generate an up to

date, spatially resolved, bottom-up inventory-based estimate of
methane emissions from the Alberta upstream oil and gas
sector following the approaches used in the Canadian national
inventory while incorporating current well- and facility-level
volumetric and activity data for 2016 as reported by industry to
the Alberta Energy Regulator (AER), (ii) quantify regional
methane emissions using airborne techniques in two distinct oil
and gas producing regions of Alberta, and (iii) directly compare
these top-down and bottom-up methane emissions estimates.
The methodological comparison has implications both for
understanding the accuracy and completeness of current
emission reporting, and for evaluating the effectiveness of
current federal and provincial regulatory efforts aimed at
reducing methane emissions in this sector.

■ CURRENT EMISSION INVENTORIES AND
REPORTING

Official inventory estimates of greenhouse gas (GHG)
emissions in Canada are provided in Environment and Climate
Change Canada’s (ECCC) National Inventory Report (NIR).19

Based on the current ECCC inventory for 2014 (most recent
data available), just over one-quarter (26%) of Canada’s total
GHG emissions and 44% of Canada’s total methane emissions
are attributed to the oil and gas sector, making it the largest
source of both total GHG and methane emissions in Canada. In
Alberta, approximately half of the province’s total GHG
emissions, and 70% of its total methane emissions, are from
the oil and gas sector. Further analysis of underlying ECCC
methane emissions inventory data are shown in Figure 1,
estimated by production type and general source category.
These are the specific emissions to be addressed by proposed
federal and provincial regulations.
As shown in the left panel of Figure 1, the majority (88%) of

the ECCC estimated 1.26 Mt of methane emissions in the
Alberta oil and gas sector is from upstream natural gas and
“conventional” oil production, with the remainder coming from
oil sands mining and upgrading (11%) and downstream
refining and distribution (0.6%). The latter contributions
from mined oil sands operations are generally diffuse and
difficult to quantify, and include fugitive methane released
during large-scale surface mining21 as well as biogenically
generated methane emitted from tailings ponds.22−24 Because
practical options for mitigating these diffuse sources are
understood to be limited, proposed Alberta regulations for oil
sands have focused on setting a future cap on total greenhouse
gas emissions of 100 MtCO2e, leaving approximately 30
MtCO2e of “room” for continued growth beyond current
emissions levels.25 Methane emissions from oil sands mining

operations are also notably excluded from the proposed Federal
regulations. Thus, successful cuts in overall methane emissions
will primarily need to be achieved through reductions from
sources outside the mined oil sands.
The right panel of Figure 1 shows the source breakdown of

the 1.11 Mt of methane emissions from upstream oil and gas
production (excluding mined oil sands), as derived from the
current ECCC inventory. A critical observation is that only
one-quarter (24.8%) of the Alberta methane emissions in the
official inventory is from directly reported data. This fraction is
ultimately derived from whole-gas venting and flaring volumes
from active oil and gas facilities reported by industry to the
Alberta Energy Regulator (AER) in accordance with AER
Directive 60.26 It is important to note that the greenhouse gas
emission factors for crude oil and crude bitumen presented by
AER in ST60B36 are based only on these reported data, and do
not include the other ∼75% of unreported source emissions as
estimated in the ECCC inventory.
Furthermore, although oil and gas operators (“industry”) in

Alberta are required to submit reportable flared and vented
whole gas volumes to AER on a monthly basis, source data used
in the federal ECCC inventory are only fully updated
approximately every five years, most recently in 2014 using
baseline data for 2011.27 In interim years, official estimates in
the NIR are generated using projections from the baseline year,
based on activity data available to ECCC (which are generally
less detailed than those maintained by AER in their general well
file and related production accounting data).28 Thus, the
methane attributed to reported venting and flaring in the
ECCC 2014 inventory data is actually scaled from 2011
reported data, where the methane component of these volumes
is calculated using assumed average gas compositions for
different types of wells and fixed flare efficiencies of 98%.29

Estimates for the remaining three-quarters of methane
emissions in Figure 1 that are not traced back to reported
volumesbroadly categorized as fugitive emissions, unreported
venting, and methane emissions from combustion sourcesare
derived from a combination of emission factors and reported or
estimated activity data (e.g., numbers of drilled oil or gas wells;
assumed typical numbers of pumps and vessels per site based
on field survey data; etc.).29 These unreported venting sources
“may include instrument vent gas, compressor start gas, purge

Figure 1. 2014 Methane emissions from the oil and gas sector in
Alberta as derived from ECCC’s National Inventory Report.20 The left
panel highlights contributions from different production types; the
right panel distinguishes the emission types from natural gas and
conventional oil production (i.e., excluding mined oil sands). Mt =
million metric tonnes, equivalent to one teragram (Tg),
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gas and blanket gas that is discharged directly to the
atmosphere, dehydrator still column off-gas” etc. that is “not
normally included in reported vented volumes”.29 Fugitive
sources in the inventory include leaking equipment such as
valves or compressor seals, tank/truck loading and unloading
operations, storage losses, and accidental releases or spills that
are similarly not included in currently reported data.

■ MATERIALS AND METHODS
Measurement Regions. Figure 2 shows the geographic

distribution of industry reported vented whole gas volumes in

the province of Alberta in 2016. As further detailed below,
Figure 2 is based on raw monthly production accounting data
submitted by industry to AER, and obtained directly from AER.
All upstream oil and gas facilities (i.e., oil and gas batteries, gas
plants, gas gathering systems, etc., but excluding mined oil
sands operations) were included in the data set. The actual
reported volumes shown in Figure 2 should closely correspond
to the green 24% “reported venting” slice of Figure 1 as
estimated by ECCC. Reported venting is heavily concentrated
in the Lloydminster region of the province, and is associated
with heavy oil production in that area. Except for some elevated
venting east of Peace River that is also associated with heavy oil
production and isolated activity near Grande Prairie, the
remainder of the province shows generally uniform, and about
an order of magnitude lower venting levels.
Two contrasting measurement regions were definedone

near Lloydminster and one near Red Deeras indicated by the
black squares on Figure 2. The Lloydminster region was
dominated by heavy oil production, whereas the Red Deer
region was characterized as a mix of older natural gas and light
oil production. As illustrated in Figure 3, these regions were

selected considering several parameters, including magnitudes
of reported venting, types of oil and gas facilities within the
regions, local density of oil and gas wells, and presence/absence
of other industrial facilities identified using the National
Pollutant Release Inventory (NPRI) database.30 Although
methane emissions are not included in the NPRI, the database
is still useful for identifying types and locations of industrial
facilities not associated with oil and gas that emit any one of
more than 300 species of interest (e.g., NOx, PM, CO, VOCs,
212 listed substances of interest, 30 individual PAH species, and
7 dioxin and 10 furan/hexachlorobenzene species) above
required ECCC reporting thresholds. In practice, this includes
a wide range of operations including waste treatment facilities
and mine sites.
The Lloydminster measurement region (Figure 3a,b), was

selected to capture the region of highest reported venting in the
province. The larger area (60 × 60 km), as compared to the
Red Deer region (50 × 50 km), was chosen to ensure well-
defined boundaries based on the distribution of active wells.
Overall there were 2291 heavy oil wells (identified as producing
from a deposit rather than a pool), 214 gas wells, 0 gas plants,
and one in situ oil sands battery/injection facility within the
measurement region. Most, if not all, of these heavy oil facilities
would be expected to be characterized as CHOPS (cold heavy
oil production with sand)31 facilities. This type of production is
noteworthy in that it frequently involves venting of methane
from the production casing directly to atmosphere.32 Among
the thousands of oil and gas facilities within the final defined
region, there was one NPRI reporting facility not associated
with oil and gas (a salt production facility), which is not
expected to be a source of methane.
The 50 × 50 km Red Deer measurement region (Figure

3c,d), reported venting levels typical of much of the province.
The density of oil and gas sites was extremely high, and all
NPRI reporting facilities contained within the selected region
were associated with oil and gas production. Overall the Red
Deer region included 2053 gas wells, 613 oil wells, and 11 gas
plants.

Regional Bottom-Up Inventory Calculations. Bottom-
up inventory estimates were generated starting from raw
monthly production accounting data submitted by industry to
Petrinex, a production accounting system used for regulatory
reporting and royalty calculations. Petrinex is jointly governed
by the provinces of Alberta and Saskatchewan, and industry as
represented by the Canadian Association of Petroleum
Producers (CAPP) and the Explorers and Producers
Association of Canada (EPAC). These data, obtained in
collaboration with AER, parallel publicly available facility
production information sold in the AER Products and Services
Catalogue. However, the form of the data obtained allowed
volumes reported at individual batteries (i.e., upstream facilities
where raw effluenta combination of gas, water, and/or oil
from one or more wells is initially collected, separated for
measurement and sometimes pretreated) and other facilities to
be linked back to individual producing wells, which was critical
for many aspects of the spatially resolved inventory develop-
ment. These facility-level volumetric data were linked with
detailed well activity data available in AER’s general well data
file, which allowed identification of types of wells feeding into
batteries. In particular, this allowed venting volumes reported in
aggregate at “paper batteries” (i.e., groups of disperse, physically
disconnected wells reporting aggregated volume data as if they
were connected at a single battery, as mostly occurs within the

Figure 2. Geographic distribution of industry reported venting
volumes in Alberta in 2016. Selected measurement regions are
indicated with black squares.
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Lloydminster region of Alberta) to be appropriately located
based on individual source wells.33,34 Light and heavy oil
batteries were distinguished based on the types of the pools or
deposits from which wells feeding each battery were producing.
A further distinction between heavy cold production and heavy
thermal production was derived from AER-assigned battery
subtypes.35

Under AER Directive 60, operators are required to report
monthly flaring and venting (whole gas) volumes exceeding
100 m3/month from active facilities.26 Industry is also required
to report volumes of produced gas used for onsite as “fuel”;
however, since this gas may be flared (i.e., used as purge or pilot
gas in a flare system), combusted (e.g., used as fuel in natural
gas compressors), or vented directly to atmosphere (e.g., used
to drive pneumatic equipment), these fuel gas data have limited
utility in emissions estimation and are only used to estimate the
small fraction of methane emitted in the exhaust of combustion
systems. Monthly reported flared and vented gas volumes are
submitted to AER through the Petrinex reporting system,
which AER uses to produce annual summary reports of flaring
and venting volumes.36 However, industry is not currently
required to report composition or methane content of vented
gas. AER does not currently collect data on greenhouse gas
emissions.36

For the present analysis, site specific gas composition data
were determined starting from an AER data set of individual
well gas analyses containing 312 654 useable samples associated
with 117 206 well segments, each coded with a unique well
identifier (UWI). Individual gas compositions at all active oil
and gas batteries in Alberta were estimated using production-
weighted composition data from each UWI feeding into each
battery. Compositions of active UWIs without available direct
gas sample data were calculated by spatial interpolation from
nearby sites with data. Where possible, compositions of
reported flared and vented gas at other facilities (e.g., gas
plants and gas gathering systems) were similarly determined
using a gas-volume-weighted average of the reported gas
receipts from feeding upstream facilities, supplemented by
spatial interpolation where necessary. This procedure allowed
site-specific methane emissions to be calculated at individual
wells, batteries, and other facilities throughout the province.
Gas production-weighted methane and ethane fractions could
then be accurately determined for each measurement region as
further detailed in the Supporting Information (SI). Finally, the
2016 methane emissions from reported flaring and venting
volumes were calculated using site-specific composition data.
As noted in the Current Inventories section, the official

ECCC national greenhouse gas inventory also includes
provincial estimates of emissions from unreported sources in

Figure 3. Measurement regions of interest near the cities of Lloydminster and Red Deer in Alberta. The background contour grid shows the local
magnitudes of reported venting using the same color scale as Figure 2. Gray dots added in (a) and (c) show nearby nonoil and gas industry facilities
appearing in the National Pollutant Release Inventory (NPRI). Colored triangles appearing in (b) and (d) indicate oil and gas wells, oil and gas
batteries, gas plants, compressor stations, gas gathering systems and other associated upstream oil and gas facilities. Background satellite imagery
source layer credits: Esri, DigitalGlobe, GeoEye, Earthstar Graphics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping Aerogrid,
IGN,IGP,swisstopo, and the GIS User Community.
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the oil and gas sector. Thus, to generate complete and directly
comparable bottom-up inventory data for each measurement-
region, estimates of unreported vented and fugitive emission
sources were also calculated. This was accomplished following
the same approaches used in the development of ECCC’s
federal greenhouse gas inventory,28,29 while updating them to
use current AER 2016 activity and production data. For each
operation type (i.e., ECCC sector) and source category28 in
each region, unreported emissions were separately updated by
prorating the relevant ECCC 2011 baseline-year data using
currently derived, up to date and region-specific activity data.
These regionalized data included numbers of existing and new
wells, flared and vented gas volumes, produced gas volumes,
reported fuel volumes, and produced volumes of liquids,
categorized as oil, heavy oil, or crude bitumen. The end result
of this analysis was a current and detailed bottom-up inventory
for each measurement region that included, and separately
identified, methane emissions associated with sources directly
reported to AER, as well as emissions from unreported source
categories listed in the ECCC national inventory.
Airborne Flux Measurements. Regional methane and

ethane emission rates were calculated based on airborne
measurements from a series of flights conducted during
October 27 to November 5, 2016. The measurement and
emission quantification methodology is detailed elsewhere37

and is only briefly reviewed here. To estimate the magnitude of
a trace gas source at the surface, a flight track consisting of a
series of concentric closed paths around the source of interest is
employed. These paths begin as close as possible to the ground
(usually ∼150 m) and climb until aircraft is well above the
highest level the plume reaches before crossing the flight path,
which is determined by the absence of significant upwind/
downwind variability in the methane signal. The instantaneous
vector flux of a target species (i.e., methane or ethane) is simply

the vector wind38 multiplied by the species density (kg m−3).
Density is computed using the mixing ratios reported by the
flight-ready Picarro CRDS spectrometer along with the
temperature from the Vaisala HMP60 probe and the pressure
from the air data computer (Aspen PFD1000). At each altitude
(individual closed path), the net flux into the region bounded
by the path is simply the sum of the flux normal to the flight
path (dot product of flux vector and flight path). The number
of laps required to obtain a robust estimate varies from ∼20
close to the source37 to 1 if the aircraft is far enough downwind
for the plume to mix throughout the boundary layer.7 For the
present case, the plume was well mixed, confirmed by at least
one vertical profile on each lap.
The uncertainty on the measured flux for each lap considered

contributions from the uncertainty in the wind measurement
(∼0.5 m s−1), the uncertainty in the methane or ethane
measurement (∼1 or 5 ppb), and the uncertainty in the
boundary layer height (∼50 m). As further detailed in the SI,
each lap was treated as an independent measurement and the
variance of the fluxes among laps was used as a direct measure
of the precision uncertainty. The reported 95% confidence
intervals in the mean regional emissions flux considered the
combined instrument and precision uncertainties, while
correcting for sample size using the t-statistic.
The relative contributions of oil and gas sector and biogenic

sources to these total measured methane fluxes were assessed in
two ways. First, direct attribution of oil and gas sector emissions
was determined using the ratio of the methane and ethane flux
as measured by the aircraft. Given that biogenic sources only
emit methane, the directly measured ratios, combined with
knowledge of the mean methane/ethane ratio of the produced
gas at local oil and gas facilities (see Table 1), allowed the mass
of methane emissions attributable to oil and gas activity to be
determined. For the Red Deer region, with a mean ethane

Table 1. Summary of Derived Bottom-up Emissions Data within the Measurement Regions

region specific inventory data Lloydminster Red Deer

measurement region statistics

GPS coordinates (centroid) −110.517365,
53.775022

−114.433770,
52.610004

dimensions (km) 60 × 60 50 × 50
no. of active wells in 2016 2631 2672
no. of gas wells/no. oil wells/no. oil wells identified as CHOPS wells 214/2350/2291 2053/613/0
no. of new wells drilled in 2016 52 24
no. of gas/oil batteries (including single-well batteries) 42/1430 773/296
no. of gathering systems/compressor stations/gas plants/other oil and gas facilities 60/29/0/86 144/126/11/50
total volume of gas produced (106 m3) 467 3511
total volume of oil and heavy oil produced (103 m3) 3906 403
volume weighted mean CH4 content of produced gas (by volume) 97.2% 82.1%
volume weighted mean C2H6 content of produced gas (by volume) 0.675% 7.65%

Emissions Associated with Directly Reported Sources
industry reported venting in 2016 (1000 m3, whole gas) 60,602 2,540
industry reported flaring in 2016 (1000 m3, whole gas) 662 8582
CH4 emissions from industry reported venting (tCH4/h) 4.6 0.16
CH4 emissions from industry reported flaring (tCH4/h) 0.0010 0.011
combined CH4 emissions from directly reported flaring and venting (tCH4/h) 4.6 0.17

Estimated Additional Methane Emissions Following ECCC Inventory Methodology
CH4 emissions from combustion sources (tCH4/h) 0.050 0.13
CH4 emissions from unreported venting sources (tCH4/h) (incl. emissions from glycol dehydrators as per Figure 4) 0.66 1.5
CH4 emissions from unreported fugitive sources (tCH4/h) (incl. emissions from leaks, gas migration, storage losses,
etc. per Figure 4)

1.4 0.93

total estimated methane from unreported sources (tCH4/h) 2.1 2.5
total expected bottom-up methane emissions (including reported and unreported sources) (tCH4/h) 6.7 2.7
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content of 7.65%, the oil and gas attributable (i.e., fossil)
component of the methane flux was estimable in this manner.
However, for the Lloydminster region, where the regional
ethane fraction was more than an order of magnitude lower
(0.68%), the corresponding uncertainties in the measured
ethane flux were more than two times the measured value,
limiting the utility of this method.
In the second approach, spatially explicit (0.1° × 0.1° spatial

resolution) methane emission estimates for anthropogenic
sources from the Emissions Database for Global Atmospheric
Research v4.3 (EDGAR)39 were used to calculate methane
fluxes from sources not associated with oil and gas (i.e., from
enteric fermentation, manure, and landfills and waste) in each
measurement region. Results suggest biogenic methane
emissions of 0.42 tCH4/h in the Lloydminster measurement
region and 0.89 tCH4/h in the Red Deer region. These values
may be slightly conservative since the provincial total EDGAR
methane emissions were noted to be 9% higher than the
available total provincial methane estimates from livestock and
landfills/waste in the ECCC NIR.20 However, the EDGAR data
were within the range of published CH4 emission estimates
from livestock and landfills/waste sources in U.S. oil and gas
producing basins.7,15,40−42 The potential for additional methane
emissions from microbial activity in local wetlands (which are
not included in the EDGAR data) was also considered using six
globally gridded wetland methane emission data sets
(CLM4Me,43 DLEM,44 LPJ-Bern,45 LPJ-WSL,46 ORCHID-
EE,47−50 and SDGVM51,52). Based on 12 consecutive years of
data from 1993−2004 (latest years available), average
November wetland emissions were estimated to be −0.0018
± 0.0020 tCH4/h in Lloydminster and 0.015 ± 0.015 tCH4/h
in Red Deer (uncertainties are standard error of the mean).
The slightly negative emissions in the Lloydminster region
implies that the soil sink is larger than the positive wetland
emissions in November in these models. Combined with the
EDGAR results, this literature analysis suggests expected total
biogenic methane emissions of 0.42 tCH4/h in the
Lloydminster region and 0.91 tCH4/h in the Red Deer region.

■ RESULTS AND DISCUSSION
Bottom-up Methane Emissions. Table 1 reports

summary statistics and derived bottom-up inventory volumes
for the two measurement regions. Although the total number of
active oil and gas wells in each region was comparable, their
production and methane emission characteristics were quite
different. The Red Deer region contained a mix of gas (77%)
and light oil wells (23%) whereas the Lloydminster region was
dominated by heavy oil wells (89%) associated with CHOPS
production. As shown in Table 1, average total methane
emissions from reported venting and flaring volumes were 4.6
tCH4/h in the Lloydminster measurement region and 0.17
tCH4/h near Red Deer. Methane emissions from reported
venting volumes were responsible for almost all of these totals
(99.98% in Lloydminster, 93.7% in Red Deer). The significantly
higher reported emissions in the Lloydminster region are
indicative of the density of CHOPS production sites in the area,
and their associated venting of casing gas. Using pool or deposit
codes of wells feeding into batteries as criteria for identifying
heavy oil production sites, CHOPS production sites accounted
for 39% of all reported venting from oil production in Alberta
(excluding mined oil sands).
Estimates of unreported methane sources were also

generated for each region by combining ECCC baseline

inventory data with up to date, region-specific volume and
activity data, as summarized in the lower rows of Table 1. In
combination with methane emissions derived from directly
reported flaring and venting volume data as submitted to AER,
this provides a more up to date and complete bottom-up
inventory estimate of both reported and unreported methane
sources as shown in the final row of Table 1. In the
Lloydminster measurement region, methane from unreported
sources added an additional 47% to that from reported venting,
representing 32% of the total bottom-up methane inventory
estimate in the region. In the Red Deer region, unreported
sources were 15 times larger than reported sources, equating to
94% of the local bottom-up methane inventory.
This is a significant finding that affirms previous studies

reporting similar challenges between inventory estimates and
reporting programs in the U.S.53 The available provincial
summary data in the ECCC NIR potentially obscures the fact
that in oil and gas production regions like Red Deer, methane
associated with directly reported data (i.e., as currently reported
to AER under Directive 60) makes up only a small fraction of
total emissions. From the regional methane emission break-
downs shown in Figure 4, unreported venting (e.g., pneumatic

instrument vent gas, purge gas, compressor starts, tank venting,
etc.) and fugitive leaks are responsible for nearly three-quarters
(73%) of bottom-up methane emissions in the Red Deer
region. By contrast, the bottom-up inventory suggests that the
Lloydminster region is dominated by reported venting (68% of
methane emissions) with fugitive leaks and unreported venting
as the next largest sources combining for 20%.

Regional Estimates from Airborne Measurements.
Top-down measured, mean total methane emission rates were
24.5 ± 5.9 tCH4/h in the Lloydminster region and 3.05 ± 1.1
tCH4/h in the Red Deer region. As further detailed in the SI,
the reported ranges are 95% confidence intervals about the
measured mean emission rates. For the Red Deer region, the
aircraft measured ethane flux of 0.53 ± 0.38 tC2H6/h, and the
regional ethane fraction of 7.65%, implied that effectively all of
the measured methane (3.07 ± 2.2 tCH4/h) was attributable to
oil and gas operations (i.e., fossil). The uncertainty range
includes the estimate of 2.14 tCH4/h that would be generated if
the literature estimate of biogenic methane emissions in the
region were instead assumed. However, the higher value seems
more likely in the context of a recent report by GreenPath
Energy Ltd.18 inventorying pneumatic equipment and
associated leaks. In a study region that almost completely
overlaps the Red Deer measurement region, they estimated an
average pneumatic leak rate of 6.54 tCH4/y per well. Applying

Figure 4. Relative importance of sources contributing to the bottom
up methane inventory for the measurement regions near (a)
Lloydminster and (b) Red Deer.
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this emission factor to the 2666 wells in Table 1 suggests a
methane flux of 2.0 tCH4/h just from pneumatic devices alone.
The present aircraft based estimate suggests that other sources
account for an additional ∼1 tCH4/h.
For the Lloydminster region, oil and gas sources were

similarly responsible for the vast majority of measured methane
emissions, equating to 24.1 ± 5.9 tCH4/h. Even considering the
slightly larger measurement area, this is still more than five
times higher than near Red Deer. Moreover, given the results
for the Red Deer region, the use of the literature-based value
for biogenic source estimation in Lloydminster might be
considered conservative.
Top-Down vs Bottom-up Emissions Comparison.

Figure 5 compares top-down measurements of methane flux
in each measurement region with presently estimated bottom-
up calculations as detailed in Table 1. The pink bar in each
panel represents the total methane flux based on the aircraft
measurements; corresponding 95% confidence intervals are
indicated directly on each bar. The red bars represent the net
methane flux attributable to oil and gas development activity
within each measurement region, where the difference between
the adjacent pink and red bars is the biogenic methane
contribution. As described previously, the biogenic methane
contribution for the Lloydminster region is based on EDGAR
estimates, while for the Red Deer region, it is based on the
directly measured ratio of ethane to methane flux.
The oil and gas sector methane emission rate in the

Lloydminster region of 24.1 tCH4/h is 3.6 times greater than
the current total bottom-up inventory estimate, and 5.3 times
greater than the methane emissions from directly reported
venting and flaring. On an annual basis, the high rate of
methane emissions alone within this small 60 × 60 km region
represents GHG emissions of 5.3 MtCO2e (conservatively
evaluated on a 100-year time horizon with GWPCH4 = 25).

Using more recent IPCC GWPCH4 values,
54 this equates to 18/

6.3 MtCO2e evaluated on a 20/100-year basis.55 These results
verify the overwhelming emission contribution of CHOPs
production in this area, while further suggesting significant
under-reporting or under-estimation of methane emissions to
the atmosphere.
Total Red Deer methane emissions were consistent with the

current regional inventory estimate once reported and
unreported sources were combined, and much lower than the
levels seen in the Lloydminster region. However, the aircraft
measurement based methane flux was still more than 17 times
greater than directly reported data would suggest, affirming the
regionally derived inventory result that the vast majority of
methane emissions in this area are from sources not currently
monitored or reported.

Implications. In the context of proposed regulations aimed
at reducing methane emissions in the Canadian oil and gas
sector by 45%, large discrepancies between actual methane
emissions and emissions from currently reported data present a
critical challenge. With unreported emissions in regions like
Red Deer accounting for 94% of the total methane emissions,
the majority of reductions will need to come from sources that
may not yet be identified and/or are not being measured.
Specifically, assuming the source breakdown (Figure 4) in the
presently estimated regional inventory for Red Deer, 70% of
methane is likely to come from unreported venting and fugitive
leaks. This strongly suggests a need for policies to address this
reporting gap as these sources represent significant methane
reductions opportunities. Research performed in U.S. fields
with similar production characteristics has highlighted the
presence of spatial and temporal emission patterns that require
a frequent or even continuous monitoring scheme in order to
control fugitive leaks.56,57 Field measurement statistics from
pneumatic equipment in particular, emphasize the importance

Figure 5. Top-down vs bottom-up comparison of methane emissions in the (a) Lloydminster and (b) Red Deer measurement regions.
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of frequent inspection programs for identifying the subset of
malfunctioning and high-emitting devices responsible for the
large majority of emissions.12 In addition, further empirical
measurements at the site and component-level, and more
comprehensive accounting of facilities, major equipment, and
activity data would consistently improve bottom-up estimates.53

The discrepancy of a factor of 3−5 between measured
methane emissions and both the reported and inventory
estimates in the Lloydminster region is noteworthy, and
contrasts with results for the Red Deer region, where combined
reported and unreported emissions essentially matched air-
borne measurements. This suggests that the unexplained
emissions in the Lloydminster region are attributable to unique
operating practices in that area, which is characterized by a large
population of CHOPS sites. The most likely source of the
excess methane emissions in the Lloydminster region is
underreported venting of casing gas from CHOPS sites,
which is generally estimated based on the product of the
measured produced oil volume and an assumed gas to oil ratio
(GOR).58 Current regulations require that the GOR be
measured every six months (if the produced gas volumes are
>1000 m3/day), or as infrequently as every 3 years (if gas
volumes are <1000 m3/day).59 One interpretation of the
present results is that current measurement and reporting
practices for casing gas venting via periodic GOR measure-
ments are inadequate. This may be especially true given
anecdotal data that produced gas volumes at CHOPS sites can
be highly variable in time.60 This temporal heterogeneity
suggests the necessity of regular monitoring if reductions are to
be achieved.
The possibility of underreporting at CHOPS sites presents

important implications at the provincial level given the
dominance of CHOPS region emissions in reported venting
totals for Alberta (Figure 2). If the extra 17.4 tCH4/h of
methane emissions in the Lloydminster measurement region
are assumed to come from CHOPS facilities, and then extended
to other CHOPS production sites in Alberta while leaving
current inventory estimates for all other types of facilities
unchanged, this suggests that total reported venting in Alberta is
low by a factor of ∼2.5 (range of 2.0−3.1). Relative to current
inventory estimates of both reported and unreported emissions,
the present results suggest that actual methane emissions from
the upstream oil and gas sector (excluding mined oil sands) are
likely to be at least 25−50% greater than currently estimated.
Considering data gathered in other regions suggest fugitive and
vented emissions are underestimated,8,15,17,41 it seems probable
that this ∼38% augmentation may be conservatively low. This
also suggests further investigations would be warranted in other
production regions of Alberta (e.g., Rocky Mountain House,
Grande Prairie, and Peace River regions), as well as in
Saskatchewan and British Columbia. Overall, the present results
suggest that federal and provincial efforts to regulate methane
are timely. A 45% cut in the current Alberta inventory methane
emissions totals from Figure 1 implies a decrease of 500
ktCH4/y. The present results suggest a reduction of 924
ktCH4/y would actually be required to reach the same absolute
emissions target.
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S.1 Airborne Measurements  

Airborne measurements of regional methane and ethane flux were completed during October 27 – 

November 5, 2016 using the quantification methodology as detailed by Conley et al.1.  It is necessary to 

note the size difference in this study’s measurement regions compared to that in the referenced 

methodology.  There are important differences between measurements obtained using the Green’s theorem 

approach for a point source and for a large field, and those differences are explored here.  In general, 

turbulence acts to reduce concentration gradients.  These gradients within a gas plume are the strongest 

nearest the emission source and tend to diffuse as the plume moves downwind.  As a result, when measuring 

point sources, where an aircraft often flies within 1-2 km of the source, more measurement laps are required 

to reduce uncertainty as the plume has not yet mixed throughout the boundary layer. This is distinctly 

different when flying a large box as in the present study.  In this study, the aircraft is potentially up to 50 

km from the source allowing sufficient time for the plume to be well mixed when it crosses the downwind 

edge of the measurement path, as shown in Figure S4.  Of course, the trade-off in moving further downwind 

is that laps take substantially longer (~1 hour for the present study), although fewer laps are required to 

achieve a meaningful statistical result. 

Another consideration for airborne measurements of large regions is “pooling”.  Typically when flying a 

point source measurement, gas pooling from the previous night is not normally a concern.  The transit time 

for a parcel carried by the mean wind across the flight path (~4 km) is a matter of minutes for even a modest 

wind.  That is not necessarily the case for the size of region flown in the present study and the action of the 

wind before the flight must be considered.  Fortunately, there is an airport at the edge of each of the boxes 

where winds are measured and recorded on an hourly basis.  By converting the wind direction and speed to 

vector components and summing those hourly measurements from the night and morning before the flight, 

we estimated the “net” motion of an air parcel in the box.  For the Red Deer field, those values were 41 km, 

28 km and 62 km respectively for October 27, November 2 and 3.  For Lloydminster, the values were 79 km 

and 116 km for November 4 and 5.  These should be conservative estimates since winds generally increase 

with height in the surface layer and the airport only measures surface winds.  Thus, pooling of emissions 

was not a concern in the present measurements. 

S.1.1 Details of the Airborne Measurement Results and Uncertainty Calculations 

Table S1 details the calculated emission rates for each lap of the measurement regions, and shows the final 

average emission fluxes and uncertainties, calculated as further described below.   
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Table S1: Summary of Top-Down emission estimates derived from the airborne measurements 

Lap # Flight date CH4 emission 
estimate [t/h] 

C2H6 emission 
estimate [t/h] 

Red Deer Measurement Region 

1 2016/10/27 2.91±0.52 0.26±0.27 

2 2016/11/02 3.12±0.89 0.51±0.53 

3 2016/11/02 2.47±0.66 0.42±0.20 

4 2016/11/02 3.59±1.00 0.92±0.47 

5 2016/11/03 5.32±0.70 0.77±0.78 

6 2016/11/03 2.00±0.25 0.44±0.09 

7 2016/11/03 1.94±0.24 0.39±0.44 

Mean Emission Rate, 𝑥̅ 3.05 0.53 

Bias Uncertainty in 𝑥̅ 0.25 0.17 

Precision Uncertainty in 𝑥̅ 0.44 0.09 

Combined Uncertainty in 𝑥̅ 0.51 0.19 

Effective Degrees of Freedom, 𝜈𝑒𝑓𝑓  25 137 

95% Confidence Interval in 𝑥̅  1.1 0.38 

 

Lloydminster Measurement Region 

1 2016/11/04 25.5±5.9 -0.047±0.05 

2 2016/11/04 23.3±5.3 0.23±0.05 

3 2016/11/05 25.5±5.9 0.32±0.24 

4 2016/11/05 23.8±6.4 0.31±0.32 

Mean Emission Rate, 𝑥̅ 24.5 0.20 

Bias Uncertainty in 𝑥̅ 2.95 0.10 

Precision Uncertainty in 𝑥̅ 0.58 0.09 

Combined Uncertainty in 𝑥̅ 3.0 0.13 

Effective Degrees of Freedom, 𝜈𝑒𝑓𝑓  2134 17 

95 %Confidence Interval in 𝑥̅  5.9 0.28 

 

The mean emission rate for each region, 𝑥̅, is calculated as the average of the 𝑁 emission rates 𝑥𝑖 measured 

for the laps of each region:   

𝑥̅ =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 (S.1) 

The uncertainty in 𝑥̅ is calculated following procedures developed by the Joint Committee for Guides in 

Metrology2 and detailed by NASA3.  The bias uncertainty in the mean emission rate is calculated from the 

contributing instrument uncertainties in individual lap measurements, 𝜎𝑖, as follows:  

𝑢𝑥̅,𝑏𝑖𝑎𝑠 = (∑ [
𝜕𝑥̅

𝜕𝑥𝑖
𝜎𝑖]

2𝑁

𝑖=1

)

1/2

=
√∑ 𝜎𝑖

2𝑁
𝑖=1

𝑁
 (S.2) 

The repeatability uncertainty of the measurements on separate laps is: 
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𝑢𝑥̅,𝑟𝑎𝑛 =
𝑠𝑥

√𝑁
 (S.3) 

where 𝑠𝑥 is sample standard deviation of the measured emission rates in the different laps. 

The combined bias and repeatability uncertainty is then: 

𝑢𝑥̅ = √𝑢𝑥̅,𝑏𝑖𝑎𝑠
2 + 𝑢𝑥̅,𝑟𝑎𝑛

2  (S.4) 

The effective degrees of freedom, 𝜈𝑒𝑓𝑓, for the combined uncertainty comes from the Welch-Satterthwaite 

formula 2,3: 

𝜈𝑒𝑓𝑓 =
𝑢𝑥̅

4

𝑢𝑥̅,𝑏𝑖𝑎𝑠
4

𝜈𝑏𝑖𝑎𝑠
+

𝑢𝑥̅,𝑟𝑎𝑛
4

𝜈𝑟𝑎𝑛

=
𝜈𝑟𝑎𝑛𝑢𝑥̅

4

𝑢𝑥̅,𝑟𝑎𝑛
4  

(S.5) 

The degrees of freedom for the repeatability uncertainty, 𝜈𝑟𝑎𝑛, is the number of laps contributing to the 

final average measurement minus 1.  The degrees of freedom in the bias uncertainty, 𝜈𝑏𝑖𝑎𝑠, may be 

considered infinite based on the number of integrated measurement during a lap.  Finally, the confidence 

interval about the mean emission rate may be calculated as: 

𝑥̅ ± 𝑡𝛼/2 ,𝜈𝑒𝑓𝑓
𝑢𝑥̅ (S.6) 

where 𝑡𝛼/2 ,𝜈𝑒𝑓𝑓
 is the t-statistic based on the effective degrees of freedom, calculated here at 95% 

confidence with 𝛼 2⁄ = 0.025.   

Figure S1 – Figure S4 show a series of maps and plots that illustrate the data gathered during the flights, 

with one flight in each region serving as an example.  Vertical profiles were conducted throughout each 

day to ensure the boundary layer was well mixed, and to identify the height of the boundary layer.  Given 

the time of year (November) and the high latitude (~54°), the boundary layer top was often below the 

minimum flight altitude (150 m AGL).  Consequently, flight legs were scrutinized for periods when the 

airplane ventured out of the boundary layer, and those legs were excluded from calculations as further 

detailed in Section S.1.2 below.  For the first Red Deer flight, 4 total laps were flown, three of which were 

excluded because of excursions above the ABL leaving one lap to be used in the final analysis.  At attempt 

was made on 10/30/2016 but fog prevented the aircraft from flying within the ABL on any leg.  The Red 

Deer flight on 11/2/2016 included 4 total laps with one excluded, leaving 3 in the final analysis.  For the 

third flight (11/03/2016), 3 laps were flown and all were used in the analysis.  For the Lloydminster region, 

4 laps were flown on 11/04/2016 with 2 used in calculations, and 4 laps were flown on 11/05/2016 with 2 

used.  One of the discarded laps in Lloydminster on 11/04/2016 was interrupted when the aircraft was 

buzzed by a CF-18 fighter jet presumably from the base near Cold Lake to the North, which caused the 

frightened and unamused pilot to deviate from the path.  
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Figure S1: Maps of flights in (a) Red Deer (11/02/2016) and (b) Lloydminster (11/04/2016).  General wind 
direction is indicated by the white arrow at the center of the box.  The color scale shows the methane mixing 

ratio measured during the flight. 

(a) (b) 
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Figure S2: Time series (a, c) for methane (blue) and ethane (red) and the geographic distribution of methane (b, 
d) for (a, b) one lap flown at 162m AGL over the Red Deer field on 11/02/2016, and (c, d) one lap flown at 160 m 

AGL over the Lloydminster region on 11/04/2016.  The gap in (c) represents the time spent flying a vertical 
profile of the boundary layer.  The geographic plots show the instantaneous wind vector (small arrows around 

the flight path) as well as the mean wind direction (large black arrow in the center of the flight path). 

(a) (b) 

(c) (d) 
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Figure S3: Methane (a, c) and ethane (b, d) flux divergence profiles for the Red Deer (11/02/2016) flight and the 
Lloydminster (11/04/2016) flight.  Blue dots represent individual loop measurements, while the red circles 

represent the bin average values for altitude intervals represented by the bars.  Finally, the green circle 
represents the estimated flux in the region below our lowest measurement (calculated as the average of the 

actual measurements). 

(a) (b) 

(c) (d) 
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Figure S4: Boundary layer profiles (a, b, c) for Red Deer 11/02/2016 flight and (d, e, f) for the Lloydminster 
11/04/2016 flight.  These profiles (and many others) were used to track the growth of the boundary layer, 

evident in the profiles of potential temperature (Theta), relative humidity (RH), methane (CH4), and water (H2O). 

 

(a) (b) (c) 

(d) (e) (f) 



S9 

S.1.2 Lap Selection 

The optimal conditions for an airborne measurement are a well mixed boundary that rises above the 

minimum safe flight altitude, with stable consistent winds.  For this campaign, the flights were conducted 

north of Calgary at a time of year when the sun was near its southern most point (November).  The colder 

temperatures reduced the buoyant motion of the boundary layer and presented a flight challenge as the 

height of the boundary layer was often below our 150 m minimum flight altitude.  Over the course of an 

individual lap, if part of the lap was above the boundary layer, that entire lap needed to be discarded.  This 

was determined post flight by examining the time series of CH4, CO2, C2H6, temperature and humidity and 

looking for times when there was indication of measuring background (above the boundary layer) values.  

Figure S5 shows an example of an excluded lap.  Each lap included one vertical boundary layer profile, 

which was excluded from the flux calculation.  This vertical profile is labelled at a time index 1429 s, with 

the arrows pointing toward the start and end of the excluded period.  The other label ‘Above BL’ shows an 

area where potential temperature (“Theta” on the graph) increased (because the aircraft crossed the potential 

temperature inversion height) and the methane trace went flat at a value typical of background (1.97 ppm).  

Each lap was scrutinized in this way for periods when the aircraft was flying above the boundary layer, and, 

if observed, the lap was discarded.   

 

Figure S5:  Example data from and excluded lap flown in the Red Deer Region on October 27, 2016. 

 

S.2 Regional Gas Compositions 

As outlined in the manuscript, site specific gas compositions were generated using available AER data 

containing 312,654 useable gas samples associated with 117,206 unique well segments, each identified by 

a Unique Well Identified (UWI).  From these data, estimated compositions at each well or well segment in 

the province were determined.  Finally, using gas production volumes reported at each UWI, distributions 

of methane and ethane fractions in the produced gas within each measurement region were derived as 

plotted in Figure S6.  In addition, to facilitate best possible estimates of methane emissions from reported 
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whole gas venting volume data, compositions at downstream facilities (e.g. gas plants and gas gathering 

systems) were determined based on the gas volume weighted average of the compositions of the received 

gas at that facility. 

 

Figure S6: Distributions of Methane and Ethane mole fractions in produced gas volume in the Lloydminster measurement 
region (a,b) and the Red Deer measurement region (c,d).  Gas production weighted mean values are shown on each graph.  

Uncertainties on these mean values were calculated via a bootstrapping statistical analysis. 

Compositions of produced gas in the Lloydminster region were narrowly distributed, with much higher 

methane fractions, and much lower ethane fractions than those of the Red Deer region.  The gas-production-

weighted mean methane composition was 97.17% in the Lloydminster region versus 82.11% in Red Deer.  

Mean ethane fractions were 0.675% in Lloydminster versus 7.65% in Red Deer.  Uncertainties on these 



S11 

mean values were estimated using a bootstrapping statistical analysis.  For each region, 5000 independent 

distributions were created by randomly drawing (with replacement) 100 m3 volumes of gas (resolution of 

the reported production data) from the distributions in Figure S6, where each bootstrapped distribution for 

each region represented the same total gas volume.  The variation in the means of these bootstrapped 

distributions is a measure of the uncertainty in the production-weighted mean composition for each region.  

As reported on the graphs, the very tight uncertainties on the production weighted mean species 

compositions reflect the very significant produced gas volumes in each region (i.e. large sample size) – 467 

million m3 in the Lloydminster region and 3511 million m3 in the Red Deer region. 

As described in the manuscript the methane-ethane ratio derived from compositional samples in the Red 

Deer region was used to allocate the biogenic portion of the measured airborne methane flux.  Accordingly, 

the accuracy of the inferred methane flux attributed to oil and gas sources in the Red Deer region is directly 

influenced by how representative the composition profile in Figure 7(c) and (d), is of the gas emitted to 

atmosphere in the region.  The well activity in the Red Deer region splits roughly into 75% gas sites and 

25% oil sites.  Typical venting sources in the Red Deer include fuel gas driven pneumatics and compressor 

vents at both oil and gas sites, as well as, flashing loss from storage tanks at oil sites.  In cases where 

processed fuel gas may be leaked through pneumatics, the methane content could potentially be higher than 

than the formation composition.  Conversely, gas emitted through routine flashing losses from tanks could 

be expected to have a lower methane content.   

Leaks of processed gas, especially on the downstream side of gas plants, are not expected to influence the 

overall composition profile of the region.  For context, within the Red Deer measurement region there are 

2053 gas wells and 613 oil wells and 11 gas plants.  It is thus more likely that the regional composition 

profile is driven by well site pneumatics and compressor vents.  In a recent report4, GreenPath Energy Ltd. 

inventoried pneumatic equipment and associated leaks in a study region that almost completely overlaps 

the Red Deer measurement region.  They estimated an average pneumatic leak rate of 6.54 tCH4/year per 

well.  Applying this emission factor to the 2666 wells in Table 1 of the manuscript suggests a methane flux 

of 2.0 tCH4/h from pneumatic devices alone.  Compared to the overall aircraft based estimate of 

3.05±1.1 t/h of methane emissions in the region, this affirms the likely dominance of emission sources 

upstream of gas plants. 

Emissions from tanks are similarly not expected to influence the overall composition profile.  Routine 

flashing losses from tanks in Alberta are typically estimated by the operator using site specific gas-oil ratio 

(m3 gas/m3 oil) or gas-in-solution ratio (m3 gas/m3 oil/kPa)5 and reported in aggregate with other reported 

sources of venting in accordance with Directive 606.  Although flashing losses in routine production are 

generally accepted to be small, if in the extreme, it is assumed that all reported venting from oil sites in the 

Red Deer measurement region is attributable to routine tank flashing losses, then reported tanks losses 

would account for roughly 3.6% of the bottom up methane flux estimate.  Thus, if tank emissions were 

driving the overall ethane/methane emission profile of the region, it could only be through fugitive and 

unreported venting.  However, recent airborne studies7,8 suggest that in areas where tank emissions are large 

enough to influence the overall emission profile, the underlying cause is likely from abnormal process 

conditions.  This may include undersized or over pressurized separation equipment, as well as, 

malfunctioning separator dump values and/or control equipment.  In each case, these abnormal process 

conditions allow produced gas to either intermittently, or in some case persistently, vent through the 

production tanks.  This would again result in a composition profile that is consistent with the formation gas.   
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