56 research outputs found

    Confocal laser scanning microscopy for the study of the morphological changes of the postextraction sites

    Full text link
    A better understanding of the remodeling process of postextraction sockets is essential in dental treatment planning. The aim of this study was to evaluate whether confocal laser scanning microscopy (CLSM) can be applied to imaging contour changes of postextraction sites, as well as to its quantification with image analysis of obtained three-dimensional images. This work describes a new application of the CLSM technique. The system used was the OLS3100-USS, LEXT model (Olympus((R))). CLSM was used for the surface analysis of the extraction site. The measurements taken with CLSM were: (1) mesio-distal distance, (2) alveolar ridge thickness, and (3) vestibular and lingual alveolar ridge height. Results of study cast scanning at baseline, 1 and 3 months after tooth extraction, with CLSM are well-detailed images of postextraction areas. The CLSM technique used in study casts is a valid method to measure the dimensional changes that happen in the edentulous area after tooth extraction. This technique allows the evaluation of changes in mesio-distal distance, thickness of the alveolar ridge and alveolar ridge height based on the measurements on the alveolar contours. Microsc. Res. Tech. 75:513-519, 2012. (C) 2011 Wiley Periodicals, Inc.Contract grant sponsor: MEC; Contract grant number: AP2008-01653; Contract grant sponsor: Generalitat Valenciana; Contract grant number: MY08/ISIRM/S/100; Contract grant sponsor: FEDERGarcía Herraiz, A.; Leiva García, R.; Cañigral-Ortíz, A.; Silvestre, FJ.; Garcia-Anton, J. (2012). Confocal laser scanning microscopy for the study of the morphological changes of the postextraction sites. Microscopy Research and Technique. 75(4):513-519. https://doi.org/10.1002/jemt.21085S513519754Aguilar, M. L., Elias, A., Vizcarrondo, C. E. T., & Psoter, W. J. (2010). Analysis of three-dimensional distortion of two impression materials in the transfer of dental implants. The Journal of Prosthetic Dentistry, 103(4), 202-209. doi:10.1016/s0022-3913(10)60032-7Araujo, M. G., & Lindhe, J. (2005). Dimensional ridge alterations following tooth extraction. An experimental study in the dog. Journal of Clinical Periodontology, 32(2), 212-218. doi:10.1111/j.1600-051x.2005.00642.xAtwood, D. A. (1963). Postextraction changes in the adult mandible as illustrated by microradiographs of midsagittal sections and serial cephalometric roentgenograms. The Journal of Prosthetic Dentistry, 13(5), 810-824. doi:10.1016/0022-3913(63)90225-7Baschong, W., Suetterlin, R., Hefti, A., & Schiel, H. (2001). Confocal laser scanning microscopy and scanning electron microscopy of tissue Ti-implant interfaces. Micron, 32(1), 33-41. doi:10.1016/s0968-4328(00)00025-1Belli, R., Pelka, M., Petschelt, A., & Lohbauer, U. (2009). In vitro wear gap formation of self-adhesive resin cements: A CLSM evaluation. Journal of Dentistry, 37(12), 984-993. doi:10.1016/j.jdent.2009.08.006Botticelli, D., Berglundh, T., & Lindhe, J. (2004). Hard-tissue alterations following immediate implant placement in extraction sites. Journal of Clinical Periodontology, 31(10), 820-828. doi:10.1111/j.1600-051x.2004.00565.xBüyükyilmaz, T., Øgaard, B., Duschner, H., Ruben, J., & Arends, J. (1997). The Caries-Preventive Effect of Titanium Tetrafluoride on Root Surfaces in Situ as Evaluated by Microradiography and Confocal Laser Scanning Microscopy. Advances in Dental Research, 11(4), 448-452. doi:10.1177/08959374970110041101Chantawiboonchai, P., Warita, H., Ohya, K., & Soma, K. (1998). Confocal laser scanning-microscopic observations on the three-dimensional distribution of oxytalan fibres in mouse periodontal ligament. Archives of Oral Biology, 43(10), 811-817. doi:10.1016/s0003-9969(98)00057-0Chen, S. Y., Liang, W. M., & Chen, F. N. (2004). Factors affecting the accuracy of elastometric impression materials. Journal of Dentistry, 32(8), 603-609. doi:10.1016/j.jdent.2004.04.002Czochrowska, E., �gaard, B., Duschner, H., Ruben, J., & Arends, J. (1998). Cariostatic effect of a light-cured, resin-reinforced glass-ionomer for bonding orthodontic brackets in vivo. Journal of Orofacial Orthopedics / Fortschritte der Kieferorthop�die, 59(5), 265-273. doi:10.1007/bf01321793De Carvalho, F. G., Puppin-Rontani, R. M., Soares, L. E. S., Santo, A. M. E., Martin, A. A., & Nociti-Junior, F. H. (2009). Mineral distribution and CLSM analysis of secondary caries inhibition by fluoride/MDPB-containing adhesive system after cariogenic challenges. Journal of Dentistry, 37(4), 307-314. doi:10.1016/j.jdent.2008.12.006Dige, I., Nilsson, H., Kilian, M., & Nyvad, B. (2007). In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. European Journal of Oral Sciences, 115(6), 459-467. doi:10.1111/j.1600-0722.2007.00494.xDing, P. G. F., Matzer, A. R. A. H., Wolff, D., Mente, J., Pioch, T., Staehle, H. J., & Dannewitz, B. (2010). Relationship between microtensile bond strength and submicron hiatus at the composite–dentin interface using CLSM visualization technique. Dental Materials, 26(3), 257-263. doi:10.1016/j.dental.2009.11.003Etman, M. K. (2009). Confocal Examination of Subsurface Cracking in Ceramic Materials. Journal of Prosthodontics, 18(7), 550-559. doi:10.1111/j.1532-849x.2009.00447.xFavia, G., Pilolli, G. P., & Maiorano, E. (2009). Histologic and histomorphometric features of bisphosphonate-related osteonecrosis of the jaws: An analysis of 31 cases with confocal laser scanning microscopy. Bone, 45(3), 406-413. doi:10.1016/j.bone.2009.05.008Faria, A. C. L., Rodrigues, R. C. S., Macedo, A. P., Mattos, M. da G. C. de, & Ribeiro, R. F. (2008). Accuracy of stone casts obtained by different impression materials. Brazilian Oral Research, 22(4), 293-298. doi:10.1590/s1806-83242008000400002Fickl, S., Zuhr, O., Wachtel, H., Bolz, W., & Huerzeler, M. (2008). Tissue alterations after tooth extraction with and without surgical trauma: a volumetric study in the beagle dog. Journal of Clinical Periodontology, 35(4), 356-363. doi:10.1111/j.1600-051x.2008.01209.xGirija, V., & Stephen, H. C.-Y. (2003). Characterization of lipid in mature enamel using confocal laser scanning microscopy. Journal of Dentistry, 31(5), 303-311. doi:10.1016/s0300-5712(03)00068-xGonzález-Cabezas, C., Fontana, M., Dunipace, A. J., Li, Y., Fischer, G. M., Proskin, H. M., & Stookey, G. K. (1998). Measurement of Enamel Remineralization Using Microradiography and Confocal Microscopy. Caries Research, 32(5), 385-392. doi:10.1159/000016475Goracci, G., Mori, G., & Baldi, M. (1999). Terminal end of the human odontoblast process: a study using SEM and confocal microscopy. Clinical Oral Investigations, 3(3), 126-132. doi:10.1007/s007840050090Grötz, K. A., Duschner, H., Reichert, T. E., de Aguiar, E. G., Götz, H., & Wagner, W. (1998). Histotomography of the odontoblast processes at the dentine-enamel junction of permanent healthy human teeth in the confocal laser scanning microscope. Clinical Oral Investigations, 2(1), 21-25. doi:10.1007/s007840050038Iyama, S., Takeshita, F., Ayukawa, Y., Kido, M. A., Suetsugu, T., & Tanaka, T. (1997). A Study of the Regional Distribution of Bone Formed Around Hydroxyapatite Implants in the Tibiae of Streptozotocin-Induced Diabetic Rats Using Multiple Fluorescent Labeling and Confocal Laser Scanning Microscopy. Journal of Periodontology, 68(12), 1169-1175. doi:10.1902/jop.1997.68.12.1169Kabasawa, M., Ejiri, S., Hanada, K., & Ozawa, H. (1995). Histological Observations of Dental Tissues Using the Confocal Laser Scanning Microscope. Biotechnic & Histochemistry, 70(2), 66-69. doi:10.3109/10520299509108319Kagayama, M., Sasano, Y., Mizoguchi, I., & Takahashi, I. (1997). Confocal microscopy of cementocytes and their lacunae and canaliculi in rat molars. Anatomy and Embryology, 195(6), 491-496. doi:10.1007/s004290050068Lam, R. V. (1960). Contour changes of the alveolar processes following extractions. The Journal of Prosthetic Dentistry, 10(1), 25-32. doi:10.1016/0022-3913(60)90083-4LOVE, R. M., & CHANDLER, N. P. (1996). A scanning electron and confocal laser microscope investigation of tetracycline-affected human dentine. International Endodontic Journal, 29(6), 376-381. doi:10.1111/j.1365-2591.1996.tb01401.xLucchese, A., Pilolli, G. P., Petruzzi, M., Crincoli, V., Scivetti, M., & Favia, G. (2008). Analysis of Collagen Distribution in Human Crown Dentin by Confocal Laser Scanning Microscopy. Ultrastructural Pathology, 32(3), 107-111. doi:10.1080/01913120801897216Nishikawa, T., Masuno, K., Mori, M., Tajime, Y., Kakudo, K., & Tanaka, A. (2006). Calcification at the Interface Between Titanium Implants and Bone: Observation With Confocal Laser Scanning Microscopy. Journal of Oral Implantology, 32(5), 211-217. doi:10.1563/799.1Øgaard, B., Duschner, H., Ruben, J., & Arends, J. (1996). Microradiography and confocal laser scanning microscopy applied to enamel lesions formed in vivo with and without fluoride varnish treatment. European Journal of Oral Sciences, 104(4), 378-383. doi:10.1111/j.1600-0722.1996.tb00095.xPereira, J. R., Murata, K. Y., Valle, A. L. do, Ghizoni, J. S., & Shiratori, F. K. (2010). Linear dimensional changes in plaster die models using different elastomeric materials. Brazilian Oral Research, 24(3), 336-341. doi:10.1590/s1806-83242010000300013Pietrokovski, J., & Massler, M. (1967). Alveolar ridge resorption following tooth extraction. The Journal of Prosthetic Dentistry, 17(1), 21-27. doi:10.1016/0022-3913(67)90046-7Pilolli, G. P., Lucchese, A., Maiorano, E., & Favia, G. (2008). New Approach for Static Bone Histomorphometry: Confocal Laser Scanning Microscopy of Maxillo-Facial Normal Bone. Ultrastructural Pathology, 32(5), 189-192. doi:10.1080/01913120802397836Pioch, T., Sorg, T., Stadler, R., Hagge, M., & Dörfer, C. E. (2004). Resin penetration through submicrometer hiatus structures: A SEM and CLSM study. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 71B(2), 238-243. doi:10.1002/jbm.b.30021Radlanski, R. J., Renz, H., Willersinn, U., Cordis, C. A., & Duschner, H. (2001). Outline and arrangement of enamel rods in human deciduous and permanent enamel. 3D-reconstructions obtained from CLSM and SEM images based on serial ground sections. European Journal of Oral Sciences, 109(6), 409-414. doi:10.1034/j.1600-0722.2001.00149.xSakakura, Y., Yajima, T., & Tsuruga, E. (1998). Confocal laser scanning and microscopic study of tartrate-resistant acid phosphatase-positive cells in the dental follicle during early morphogenesis of mouse embryonic molar teeth. Archives of Oral Biology, 43(5), 353-360. doi:10.1016/s0003-9969(98)00019-3Scivetti, M., Pilolli, G. P., Corsalini, M., Lucchese, A., & Favia, G. (2007). Confocal laser scanning microscopy of human cementocytes: Analysis of three-dimensional image reconstruction. Annals of Anatomy - Anatomischer Anzeiger, 189(2), 169-174. doi:10.1016/j.aanat.2006.09.009Sønju Clasen, A. B., Øgaard, B., Duschner, H., Ruben, J., Arends, J., & Sönju, T. (1997). Caries Development in Fluoridated and Non-Fluoridated Deciduous and Permanent Enamel in Situ Examined by Microradiography and Confocal Laser Scanning Microscopy. Advances in Dental Research, 11(4), 442-447. doi:10.1177/08959374970110041001Suzuki, K., Aoki, K., & Ohya, K. (1997). Effects of surface roughness of titanium implants on bone remodeling activity of femur in rabbits. Bone, 21(6), 507-514. doi:10.1016/s8756-3282(97)00204-4Takenaka, S., Iwaku, M., & Hoshino, E. (2001). Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis. Journal of Infection and Chemotherapy, 7(2), 87-93. doi:10.1007/s101560100014Thongthammachat, S., Moore, B. K., Barco, M. T., Hovijitra, S., Brown, D. T., & Andres, C. J. (2002). Dimensional accuracy of dental casts: Influence of tray material, impression material, and time. Journal of Prosthodontics, 11(2), 98-108. doi:10.1053/jopr.2002.125192Traini, T., Degidi, M., Iezzi, G., Artese, L., & Piattelli, A. (2007). Comparative evaluation of the peri-implant bone tissue mineral density around unloaded titanium dental implants. Journal of Dentistry, 35(1), 84-92. doi:10.1016/j.jdent.2006.05.002Van der Weijden, F., Dell’Acqua, F., & Slot, D. E. (2009). Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. Journal of Clinical Periodontology, 36(12), 1048-1058. doi:10.1111/j.1600-051x.2009.01482.xZaura-Arite, E., van Marle, J., & ten Cate, J. M. (2001). Confocal Microscopy Study of Undisturbed and Chlorhexidine-treated Dental Biofilm. Journal of Dental Research, 80(5), 1436-1440. doi:10.1177/0022034501080005100

    Oral Biofilm Architecture on Natural Teeth

    Get PDF
    Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species
    • …
    corecore