599 research outputs found

    Cellular mechanisms in sympatho‐modulation of the heart

    Get PDF
    Cardiovascular function relies on complex servo-controlled regulation mechanisms that involve both fast-acting feedback responses and long-lasting adaptations affecting the gene expression. The adrenergic system, with its specific receptor subtypes and intracellular signalling cascades provides the major regulatory system, while the parasympathetic system plays a minor role. At the molecular level, Ca2+ acts as the general signal trigger for the majority of cell activities including contraction, metabolism and growth. During recent years, important new results have emerged allowing an integrated view of how the multifarious Ca2+-signalling mechanisms transmit adrenergic impulses to intracellular target sites. These insights into cellular and molecular mechanisms are pivotal in improving pharmacological control of the sympathetic responses to surgical trauma and perioperative stress. They are examined in detail in this review, with particular emphasis being given to the differences in intracellular signalling between cardiomyocytes and vascular smooth muscle cell

    Generalized Processing for Pulsed Synthetic Aperture Radar

    Get PDF
    The Range-Doppler Algorithm (RDA) and the Chirp-Scaling Algorithm (CSA) process Synthetic Aperture Radar (SAR) data with approximations to ideal SAR processing. These approximations are invalid for data from systems with wide bandwidths, large bandwidths, and/or low center frequencies. While simple and efficient, these frequency-domain methods are thus limited by the SAR parameters. This paper explores these limits and proposes a generalized chirp-scaling approach for extending the utility of frequency-domain processing. We demonstrate how different order approximations of the SAR signal in the two-dimensional frequency domain affect image focusing for varying SAR parameters. From these results, a guideline is set forth which suggests the required order of approximation terms for proper focusing. A proposed generalized frequency-domain processing approach is derived. This method is an efficient arbitrary-order chirp-scaling algorithm that processes the data using the appropriate number of approximation terms. The new method is demonstrated using simulated data

    The BYU Micro-SAR: Theory and Application of a Small LFM-CW Synthetic Aperture Radar

    Get PDF
    The BYU microSAR is a new, low-cost Synthetic Aperture Radar (SAR) system developed by students at Brigham Young University. The simple design is based on a linear frequency modulated continuous wave signal (LFM-CW) which reduces the size and power compared to a conventional pulsed SAR system. The BYU microSAR is small enough to y on a small UAV, further reducing the cost of operation and extending the use of SAR into new areas. Due to the LFM-CW design, modi ed SAR processing algorithms are needed which account for the movement of the platform during data collection. SAR processing assumes that the sensor is moving in a straight line at a constant speed, but in actuality a UAV or airplane will deviate, often signi cantly, from this ideal. This non-ideal motion can seriously degrate the SAR image quality. This paper presents the design of the BYU microSAR, the theory of operation, and the modi ed processing algorithms which account for the continuous motion

    Cardiac remodelling hinders activation of cyclooxygenase-2, diminishing protection by delayed pharmacological preconditioning: role of HIF1α and CREB

    Get PDF
    Aims We tested whether delayed pharmacologic preconditioning elicited by isoflurane is protective in infarct-remodelled hearts. Methods and results Male Wistar rats were treated with the preconditioning drug isoflurane 6 weeks after permanent ligation of the left anterior descending coronary artery. Twenty-four and 48 h later, hearts were perfused on the Langendorff system and treated with cyclooxygenase-2 or 12-lipoxygenase inhibitors before exposure to 40 min of ischaemia followed by 90 min of reperfusion. Infarct size was determined by triphenyltetrazolium chloride staining and lactate dehydrogenase release. Cyclooxygenase-2 expression and activity were measured by Western blotting and colorimetric assay. Nuclear translocation of cyclooxygenase-2-inducing transcription factors HIF1α, CREB, STAT3, and NFκB was determined. Post-infarct, remodelled hearts exhibit alterations in cellular signalling, time course and extent of isoflurane-induced late protection. While remodelled, preconditioned hearts exhibited protection exclusively at 24 h, healthy hearts showed sustained protection for up to 48 h, which correlated with cyclooxygenase-2 protein expression and enzymatic activity. The cyclooxygenase-2 inhibitors celecoxib and NS-398, but not the 12-lipoxygenase inhibitor cinnamyl-3,4-dihydroxycyanocinnamate, abolished delayed protection in both healthy and remodelled hearts, identifying cyclooxygenase-2 as a key mediator of late protection in both models. Isoflurane induced nuclear translocation of HIF1α in all hearts, but CREB was exclusively activated in healthy but not remodelled myocardium, which expressed higher levels of the CREB antagonist ICER. Delayed protection by isoflurane in remodelled hearts was more vulnerable to inhibition by celecoxib. Conclusion Isoflurane failed to mobilize cyclooxygenase-2-inducing CREB in ICER-overexpressing, remodelled hearts, which was associated with a shortening of the second window of protectio

    Draft Genome Sequence of the Principal Etiological Agent of Farmer?s Lung Disease, Saccharopolyspora rectivirgula

    Get PDF
    Saccharopolyspora rectivirgula is the main cause of farmer's lung disease. The development of recombinant antigens to standardize the serodiagnosis of the disease requires knowledge of the S. rectivirgula genome. We sequenced the genome of an environmental strain, S. rectivirgula DSM 43113. A total of 3,221 proteins were found to be encoded in a short 3.9-Mb genome

    Sainfoin – New Data on Anthelmintic Effects and Production in Sheep and Goats

    Get PDF
    Gastrointestinal nematodes (GIN) are one of the most important problems affecting health and therefore performance and welfare in small ruminant husbandry. The control of these parasites in the past strongly relied on the repeated use of anthelmintic drugs. This has led to nematode populations which are resistant to most of the currently available anthelmintics. Furthermore customer’s demands for organic and residue free animal products are increasing. The aforementioned problems have given a strong impetus for the development of new non-chemical strategies to control GIN. Previous research has pointed out the anthelmintic potential of sainfoin (Onobrychis viciifolia) and other tanniferous (CT) feed sources in goats and lambs infected with GIN. A recent Swiss experiment focussed on the use of sainfoin and field bean (Vicia faba, cv. Scirocco) as single CT sources as well as in combination for additional synergic effects, to reduce periparturient GIN egg rise of ewes in late gestation and early lactation. Another experiment with Alpine goats concentrated on the influence of sainfoin on milk performance and cheese quality. The results of these experiments will be presented and discussed in connection with previous knowledge on (i) anthelmintic effects of sainfoin and (ii) the influence of sainfoin administration on performance

    Lumbar artery perforator (LAP) flap: a salvage tool for extended lumbo-sacral necrosis after bilateral internal iliac arteries embolization.

    Get PDF
    We report the case of a 52-year-old man presenting an extensive lumbosacral necrosis after bilateral internal iliac arteries embolization following unstable pelvic fracture. Coverage of the defect was performed using two extended lumbar artery perforator flaps in a propeller fashion. Good functional and esthetic result was achieved at one-year follow-up

    Anaesthetics and cardiac preconditioning. Part II. Clinical implications

    Get PDF
    There is compelling evidence that preconditioning occurs in humans. Experimental studies with potential clinical implications as well as clinical studies evaluating ischaemic, pharmacological and anaesthetic cardiac preconditioning in the perioperative setting are reviewed. These studies reveal promising results. However, there are conflicting reports on the efficacy of preconditioning in the diseased and aged myocardium. In addition, many anaesthetics and a significant number of perioperatively administered drugs affect the activity of cardiac sarcolemmal and mitochondrial KATP channels, the end‐effectors of cardiac preconditioning, and thereby markedly modulate preconditioning effects in myocardial tissue. Although these modulatory effects on KATP channels have been investigated almost exclusively in laboratory investigations, they may have potential implications in clinical medicine. Important questions regarding the clinical utility and applicability of perioperative cardiac preconditioning remain unresolved and need more experimental work and randomized controlled clinical trials. Br J Anaesth 2003; 91: 566-7
    corecore