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In the UK, there are ~20 000 deaths within 30 days of

surgery every year, 9000 of which have a cardiac cause.93

The number of major cardiac complications is likely to be in

the region of 150 000 per annum. As 60% of patients who

die within 30 days of surgery suffer from coronary artery

disease94 it is reasonable to assume that the majority of

cardiac complications of anaesthesia and surgery results

from myocardial ischaemia leading to myocardial injury

(Fig. 1).

Myocardial responses to ischaemia

Acute myocardial ischaemia

The acute occlusion or progressive constriction of a

coronary artery causes reduction or abolition of systolic

shortening and thickening of the ischaemic wall.81

Ischaemic segments also demonstrate paradoxical wall

motion (termed post-systolic shortening or post-systolic

thickening). These functional changes relate directly to the

severity of the reduction in coronary blood ¯ow. As post-

systolic shortening and thickening occur after aortic valve

closure, they do not contribute to ejection and result in an

internal shift of blood in the ventricle, and may impair

relaxation. Acute or progressive ischaemia of the left

ventricle also cause an increase in chamber stiffness in the

ischaemic and in remote non-ischaemic segments.81 This

generalized increase in myocardial chamber stiffness con-

tributes to an elevation of the left ventricular end-diastolic

pressure, especially in the presence of volume loading.81

The increase in end-diastolic pressure contributes to a

vicious circle as it further impairs coronary blood ¯ow by

increasing diastolic wall tension. The mechanisms of the

increase in ventricular chamber stiffness of remote, well-

perfused myocardium have not been elucidated. However,

ventricular stiffening does not depend on loading conditions

and is likely to result from the release of mediators.

Mechanisms of myocardial ischaemia

The time-course of the effects of ischaemia on cardiac tissue

is well known. There is a marked reduction of contractile

function resulting from decreased ATP production a few

seconds after the onset of ischaemia. Leakage of potassium

ions is responsible for the alterations of ST-segments.

Within minutes, an intracellular acidosis develops associ-

ated with an increase in myoplasmic Ca2+ and the beginning

of cell swelling. Later, cellular lesions become irreversible.

The ultrastructure of the cells becomes altered and

macromolecules (CK-MB, troponins) are released. An

increased concentration of cytosolic and mitochondrial

Ca2+ plays a central role in the damage to the cells and their

membranes104 (Fig. 2).

Myocardial ischaemia occurs in the presence of ®xed or

dynamic coronary artery stenoses and, in the case of the

right ventricle, in response to afterload mismatch. The main

causes of ischaemia with ®xed coronary stenoses include

tachycardia, excessive left ventricular ®lling, and hypox-

aemia. Tachycardia, systolic hypertension and b-adrenergic

stimulation increase the oxygen requirements and may

decrease oxygen delivery. Causes of ischaemia in the

presence of dynamic stenoses include those described above

and, in addition, activation of sympathetic and parasympa-

thetic systems. Moreover, several endothelium-derived

mediators may enhance vasoconstriction.

In the normal heart, the role of the autonomic nervous

system is overshadowed by local metabolic coronary

vasoregulation. Normally, activation of the sympathetic
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nervous system at the level of a1- and b1-adrenoceptors

increases blood pressure, heart rate, and contractility. As a

result, myocardial oxygen consumption increases and local

vasoregulation decreases coronary vascular resistance. The

direct effect of a1-adrenoceptor stimulation, vasoconstric-

tion, is minimal under normal circumstances but may be

exaggerated in the presence of coronary artery disease,

extreme exercise, or haemorrhagic shock. Activation of the

parasympathetic system causes bradycardia and hypoten-

sion, thereby reducing myocardial oxygen requirements.

Local regulation increases coronary vascular resistance and

the direct coronary vasodilatation caused by acetylcholine is

masked.

Endothelins act on vascular smooth muscle and are

extremely powerful vasoconstrictors. However, they exert

complex physiological effects. Through activation of

endothelin B (ETB)-receptors, endothelial nitric oxide

synthase is activated and nitric oxide is released causing

cGMP-mediated vasodilatation. Activation of ETB-recep-

tors also increases the activity of cyclo-oxygenase leading to

the release of prostaglandin I2 (PGI2). The latter causes

vasodilatation and minimizes smooth muscle cell prolifer-

ation. When the endothelium is normal, there is a delicate

balance between vasoconstriction and vasodilatation in

response to endothelins. The vasodilatory role of the

endothelium becomes more apparent when it is damaged

by atheroma, hypercholersterolaemia, hypertensive heart

disease, and after reperfusion. An imbalance of mediators

can then develop and facilitate vasoconstriction. There are

several important mechanisms involved in this vasocon-

striction. Norepinephrine causes a1-adrenoceptor-mediated

Fig 2 Changes and consequences of cation ¯uxes during ischaemia-

reperfusion. (A) Cessation of oxygen supply in ischaemia leads to a loss

of ATP production and an increase of reactive oxygen species (ROS) in

the mitochondria. Reduced activity of the ATP consuming Na+-K+-pump

lowers the outside±inside sodium gradient, Na+ accumulates in the

myocyte and the resting membrane potential is lowered. With the

development of acidosis, the Na+-H+-exchanger (NHX) further increases

intracellular Na+. Under these conditions the Na+-Ca2+-exchanger (NCX)

operates in the reverse mode, letting Ca2+ into the cell. Ca2+ also enters

through the sarcolemmal L-type voltage-gated Ca2+-channel (L) as the

resting membrane potential is low. The increased Ca2+ is taken up into

the sarcoplasmic reticulum (SR) by the SR Ca2+-pump SERCA2 (P) and

released from there via two types of release channels, the ryanodine

receptor channel (RYR) and the IP3 receptor channel (IP3R), leading to

contraction. (B) Reoxygenation during reperfusion restores ATP

production with a further boost of ROS. Reactivation of the Na+-K+-

pump by ATP slowly restores the sodium gradient leading to normal

cation ¯uxes with the NCX eventually extruding the excess of cytosolic

Ca2+. During the early reperfusion phase when the intracellular Ca2+

level is still high, myocardial contracture (supercontraction of myocytes)

may develop. When contracture affects the entire heart as it may occur

after global ischaemia, it has been termed the `stone heart'

phenomenon.104 157

Fig 1 Schematic characterization of cardiac `stunning' and `hibernation'.

In stunning normal blood ¯ow and energy metabolism are accompanied

by reduced contractility, designated as `¯ow-contractility mismatch'. The

impaired contractile function seems to be caused primarily by increased

intracellular Ca2+, activation of Ca2+-dependent non-lysosomal cysteine

proteinases (calpains), and degradation of sarcomere-associated proteins

including troponin-I. Hibernation is characterized by reduced contractility

accompanied by reduced oxygen consumption as a consequence of

reduced blood ¯ow. Partially damaged cardiomyocytes can be rescued to

full function after stunning as well as after hibernation, provided normal

blood ¯ow is restored after the latter within the critical time period

before irreversible cell damage has occurred. Despite their distinct

de®nition, stunning and hibernation may merely represent intermediary

states in a continuum extending from unimpaired functional myocytes to

necrosis.157
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vasoconstriction. When the endothelium is damaged,

acetylcholine causes muscarinic receptor mediated vaso-

constriction,79 instead of endothelium-dependent vaso-

dilatation. Thus, with endothelial damage both

sympathetic and parasympathetic stimulation may cause

coronary vasoconstriction. As sympathetic overactivity is

part of the perioperative stress response, exaggerated

vasoconstriction may be expected to contribute to peri-

operative myocardial ischaemia and cardiac damage.

Similarly, the effects of endothelins are altered when the

endothelium is damaged and activation of nitric oxide-

synthase and cyclo-oxygenase does not occur.

Consequently, only effects of endothelins in these circum-

stances are those on endothelin A (ETA)- and ETB-receptors

in vascular smooth muscle resulting in vasoconstriction and

smooth muscle proliferation.

Myocardial stunning (¯ow-contractility mismatch)

The term myocardial stunning was coined by Braunwald

and Kloner14 in 1982 to describe a reduction in function

after a brief period of ischaemia followed by reperfusion.

The impairment of function could last for several hours or

days at a time when coronary blood ¯ow was normal and

there was no obvious cellular damage. In clinical practice,

interventions such as transluminal coronary angioplasty,

coronary artery bypass graft surgery, and thrombolysis after

myocardial infarction are human models of ischaemia-

reperfusion phenomena. During the perioperative period, a

high proportion of adult patients suffer from episodes of

myocardial ischaemia, most of which are silent but can be

prolonged. Importantly, silent myocardial ischaemia is

supposed to be a common cause of myocardial stunning

and is a predictor of adverse cardiac outcome.

Mechanisms of myocardial stunning

Myocardial ischaemia followed by reperfusion causes

reversible or irreversible damage depending on its duration

(Figures 1 and 2). In stunning, ischaemic damage is, in

principle, reversible.67 Three main mechanisms are in-

volved in the establishment of stunned myocardium:

formation of free oxygen radicals, accumulation of intra-

cellular Ca2+, and degradation of contractile proteins. Many

studies have shown that during ischaemia, but more

importantly during reperfusion, considerable production of

free oxygen radicals occurs.99 Free radicals do not have a

single target, but adversely affect many components of the

cell including sarcolemmal and subcellular membranes of

organelles. The role of free radicals in stunning is con®rmed

by the improved post-ischaemic functional recovery in the

presence of superoxide dismutase.138 Production of free

radicals involves xanthine oxidase, oxidation of catechol-

amines, uncoupling of mitochondrial respiration, and

activation of neutrophils.

During ischaemia and the early phase of reperfusion,

there is an increase in the concentration of intracellular

Ca2+. Although disappearing in the late phase of

reperfusion, Ca2+ overload can decrease the sensitivity of

contractile proteins to Ca2+, thus diminishing the

developed force.9 Ca2+ overload my result from altered

characteristics of the Na+/Ca2+ antiport and from altered

Ca2+ ¯uxes at the level of the sarcoplasmic reticulum. Such

alterations in Ca2+ handling may be attributable to

ischaemia-induced intracellular acidosis. During the early

phase of reperfusion, the H+/Na+ antiport is maximally

stimulated. While the acidosis is progressively corrected,

there is an increase in intracellular Na+ leading to a further

increase in Ca2+.

Furthermore there is some evidence that translocation of

heat-shock proteins (Hsp-27, aB-crystalline) with covalent

binding to myo®brils, together with degradation of con-

tractile proteins such as troponin I, as evidenced in a

transgenic mouse model overexpressing troponin I frag-

ments,88 may be, at least in part, involved in the

pathogenesis of myocardial stunning. Also, an increase in

coronary vascular resistance and a reduction in vasodilator

response were previously reported during reperfusion and

may represent some sort of vascular counterparts of

stunning in endothelial cells (`microvascular stunning').10

However, not all studies con®rm this phenomenon.32

Myocardial hibernation

The concept of myocardial hibernation was put forward by

Rahimtoola in 1985.110 111 In the hibernating myocardium,

ventricular function is diminished as a consequence of

insuf®cient coronary blood ¯ow (Fig. 1). However, this

reduction is not necessarily permanent: an improved

balance of supply and demand may augment myocardial

function.7 78 The issue of myocardial hibernation is clinic-

ally important because the risk of adverse cardiac outcome

in cardiac and non-cardiac surgery increases with a

reduction of the ejection fraction. If coronary revasculariza-

tion increases the ejection fraction the risk of adverse

cardiac outcome is likely to be reduced. The likelihood of

improved function after coronary reperfusion can be

predicted by the result of a dobutamine stress echocardio-

gram. If dobutamine worsens ventricular function (revers-

ible ischaemia) coronary revascularization is likely to

improve cardiac function.1

Mechanisms of myocardial hibernation

In hibernating myocardium, cardiac metabolism is down-

regulated. It has been proposed that abolition of contractility

of hibernating cardiac tissue is attributable to chronic

stunning caused by multiple episodes of severe ischaemia

followed by repetitive reperfusion. Other experimental

models suggest that hibernation occurs as a result of chronic

low-¯ow states. In either case, hibernating myocardium

should be salvageable by restitution of an adequate coronary

blood ¯ow.
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Myocardial preconditioning

In 1986, Reimer and colleagues112 reported that a brief

period of ischaemia decreased the rate of ATP depletion

during a further period of ischaemia. Murry and col-

leagues89 reported that brief periods of ischaemia made the

heart more resistant to infarction during a subsequent acute

coronary occlusion, reducing the infarct size by 70±80%.

This phenomenon, termed myocardial preconditioning is

the most powerful means of achieving cardiac protection.

Protection conferred by ischaemic and (most) pharmaco-

logical preconditioning protocols exhibits two windows: an

acute memory phase that develops within minutes of the

ischaemic stimulus and lasts only between 1 and 3 h (classic

or early preconditioning), and a longer, more delayed, phase

(late preconditioning) starting after 12±24 h and persisting

for 2±4 days.156 Delayed protection by preconditioning is

thought to be primarily attributable to alterations in gene

expression. Myocardial preconditioning has been docu-

mented in all animal species in which it has been studied and

in human cardiac tissue. Whether preconditioning facilitates

the recovery of function in stunned myocardium is still

debated.19 101 However, delayed preconditioning, in con-

trast to early preconditioning, always confers protection

against stunning.

Preconditioning can result from successive episodes of

angina or silent myocardial ischaemia. Indeed, infarct size is

known to be smaller, if it has been preceded by

angina.69 91 100 Preconditioning also reduces the risk of

ischaemia-induced ventricular tachycardia and ventricular

®brillation.145 In an almost experimental situation, pre-

conditioning can occur during coronary angioplasty where

several temporary occlusions are applied and the effects of a

longer period of occlusion are minimized. During coronary

angioplasty, sequential occlusions cause less angina,

smaller ST-segment changes and lesser lactate production

than the ®rst 90 second occlusion.28 Also, delayed

preconditioning can be observed after prolonged nitro-

glycerin administration in patients undergoing angioplasty

24 h later. Although ischaemic preconditioning, or agents

that mimic preconditioning, elicit cardiac protection in

patients undergoing cardiac surgery,51 the clinical use of

preconditioning in cardiac surgery is controversial as some

studies show bene®ts48 148 while others do not,59 72 102 or

even demonstrate deleterious effects.

Mechanisms of myocardial preconditioning

Ischaemic stimuli cause the release of stress mediators such

as adenosine, bradykinin, norepinephrine, and opioids. The

mechanisms of preconditioning involve several types of

triggers and mediators156 (Fig. 3). Amongst them, adenosine

A1- and A3-receptors, bradykinin2-receptors, d1-opioid

receptors and a1-adrenoceptors play an important role.

Via G-proteins, phospholipase C (PLC) and protein kinase

C (PKC), these receptors act on mitochondrial and

sarcolemmal KATP channels and Ca2+ channels.152 153 As

many mediators are involved in preconditioning, and many

substances are capable of preventing it, a `summation

hypothesis' has been proposed by Downey and col-

leagues.31 36 In order for ischaemic preconditioning or

pharmacological preconditioning to occur, it is necessary to

reach an activation threshold. This threshold represents the

sum of the activity of several mediators. The role of lactate

as a triggering mechanism is controversial, even though

lactate can open KATP channels and increase the expression

of heat-shock proteins.4 65 Ischaemic preconditioning is

caused by temporary occlusions, generally lasting 5 min,

followed by reperfusion. A comparison of various numbers

of cycles of ischaemia-reperfusion shows that protection is

best with 1±4 cycles. With six or more cycles protection is

reduced und ultimately lost.47 While one cycle may be

enough to trigger the release of protective substances, many

more cycles may be unable to enhance further release of

triggers. A high number of short ischaemic periods may start

to cause cumulative ischaemic damage, thus decreasing the

ef®cacy of preconditioning.47

Preconditioning reduces cardiomyocyte necrosis in vivo

and in vitro. Apoptosis is known to increase with ischaemia.

Fig 3 Main signalling pathways in ischaemic preconditioning.

Stimulation of G-protein coupled receptors by primary messengers

activates phospholipases (PL), which in turn produce two second

messengers originating from phosphatidylinositol bisphosphate (PIP2),

namely inositol trisphosphate (IP3) and diacylglycerol (DAG). The

former releases Ca2+ from the sarcoplasmic reticulum (SR) via the IP3

receptor channel (IP3R), the latter activates different PKC isoforms

(PKC). PKC isoforms translocate to their appropriate target sites,

activating the sarcolemmal and mitochondrial ATP-dependent potassium

channels (K) and initiating distinct gene expression in the cell nucleus.

Nitric oxide originating from either the endogenous NO-synthase (NOS)

or from extracellular sources may also activate PKC and the potassium

channels directly or via its reactive nitrogen oxide products (not shown

in this ®gure). The same mechanism holds true for the reactive oxygen

species (ROS) that are produced in the mitochondria under stress and

increased Ca2+. Ca2+ enters the myocyte via the L-type voltage-gated

Ca2+-channel (L) and is taken up into the SR by the Ca2+-pump

(SERCA2). Ca2+-release from the SR for contraction primarily occurs via

the ryanodine receptor channel (RYR).
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In ischaemia-reperfusion, both ischaemia and reperfusion

contribute equally to apoptosis.76 By contrast, necrosis

occurs primarily during reoxygenation. Preconditioning

effectively reduces necrosis and apoptosis. Opening of

KATP channels together with modulation of Ca2+ homeo-

stasis may explain why inhalation anaesthetics inhibit

apoptosis in cardiomyocytes.3 151

Role of adenosine

The role of adenosine in preconditioning has been well

documented. Adenosine A1-receptor activation plays an

important role. These receptors are coupled with KATP

channels68 via Gi-proteins. Activation of adenosine recep-

tors decreases the production of reactive oxygen species and

attenuates myocardial stunning.92 The role of adenosine

receptors in preconditioning is con®rmed by the observation

that adenosine A1-receptor antagonists can block KATP

channels, thereby preventing ischaemic preconditioning. In

addition, preconditioning can be mimicked by adenosine

A1-receptor agonists.

Role of bradykinin

Bradykinin is an in¯ammatory stress mediator and a

vasodilator. In some experimental models, an infusion of

bradykinin has been shown to reduce ischaemic injury,15 36

while bradykinin receptor antagonists negated the protec-

tion conferred by ischaemic preconditioning.15 36

Role of opioids

Morphine and fentanyl have been shown to precondition

the myocardium.58 120 152 Conversely, d-opioids receptor

antagonists prevent ischaemic preconditioning.84 122 123

Role of adrenergic receptors

Both a- and b-adrenoceptors are involved in precondition-

ing. While preconditioning is induced primarily by b1-

adrenoceptors,34 b2-adrenoceptor may play a role via

activation of L-type calcium channels. Brief episodes of

ischaemia cause the release of norepinephrine in the

myocardium, while exogenous a1-adrenoceptor agonists

may cause pharmacological preconditioning.132

Role of free oxygen radicals and nitric oxide

Free radicals cause myocardial damage during ischaemia-

reperfusion. However, treatment with small amounts of free

radicals before an ischaemic insult can reduce infarct size

in vitro,6 an effect that is abolished by free radical

scavengers. Nitric oxide-cGMP signalling is also

important.25 33 92 152 Inhalation anaesthetics may modulate

the activity of various isoenzymes of nitric oxide synthase

(nNOS, eNOS, iNOS) as they are heterogeneously

distributed in the myocardium.

Calcium ions

A preischaemic increase in Ca2+ represents a second

messenger in the development of ischaemic precondition-

ing,85 even though Ca2+ overload is a major contributor to

cell damage. Short-time administration of increased Ca2+

concentrations to myocardial tissue is an effective pre-

conditioning stimulus, which can be inhibited by adminis-

tration of Ca2+ channel blockers.141

Protein kinase C (PKC)

PKC transfers g-phosphoryls from ATP to hydroxyl groups

of serine/threonine residues in proteins. This phosphoryl-

ation controls the function of many cellular effectors. PKC

plays an important role in ischaemic and pharmacological

preconditioning.50 113 134 139 PKC activators can induce,

while PKC inhibitors prevent preconditioning.150 Inhala-

tion anaesthetics may directly activate PKC. Importantly,

preconditioning-associated isoform translocation of PKC to

subcellular targets is highly dependent on species, age, and

on the type of preconditioning stimulus.

Role of ATP-dependent potassium channels (KATP channels)

Ultimately, KATP channels hold the central role in ischaemic

and pharmacological preconditioning153 (Figures 2 and 3).

Sarcolemmal KATP channels were described by Noma in

1983.96 These channels open when ATP levels fall, allowing

potassium ef¯ux so causing membrane hyperpolarization

and reducing the action potential duration. These changes

decrease the open probability of voltage-gated Ca2+ chan-

nels. The resulting reduction in Ca2+ concentration pre-

serves ATP levels and reduces coronary vascular tone.118

The increase in extracellular potassium also facilitates

coronary vasodilatation and increases blood ¯ow to the

ischaemic region.5 KATP channels mediate the response to

hypoxia and the hyperaemic response to brief coronary

occlusions. However, reduction of action potential duration

does not correlate with the reduction in infarct size. Surface

KATP channels were initially thought to mediate precondi-

tioning. More recent evidence indicates that mitochondrial

KATP channels play a pivotal role in mediating cardiac

preconditioning.35 153 Opening of mitochondrial KATP

channels may optimize mitochondrial energy production,

decrease mitochondrial Ca2+ overload, and prevent

opening of mitochondrial permeability transition pores

(Fig. 4).30 43 83 157 Numerous studies have con®rmed the

important role of these channels. The role of KATP channels

in human preconditioning is evidenced by the observation

that ischaemic preconditioning does not occur in patients

taking sulfonylureas, as these agents block KATP

channels.13 21

Other bene®cial effects associated with cardiac

preconditioning

Glycogen depletion and lactate accumulation during

ischaemic preconditioning periods play a role in myocardial

protection. Indeed, transient exposure to lactate improves

contractile recovery in rat heart.29 Entrapment of neutro-

phils and platelets in the coronary vasculature occurs in

ischaemia. The protective effects of preconditioning also
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extend to the endothelium of the coronary vasculature and to

the adhesion properties of platelets and leucocytes to these

vessels. Ischaemic preconditioning reduces ICAM-1 pro-

duction and thus neutrophil entrapment.116 In turn, reduced

neutrophil and platelet entrapment is associated with

enhanced post-ischaemic function.44 45

Late preconditioning

Late preconditioning is mediated by inducible nitric oxide

synthase129 146 and can be elicited by nitric oxide

donors.46 130 It can also be triggered by heat stress,

lipopolysaccharides (LPS), or monophosphoryl lipid A;

these are known to trigger delayed endogenous protective

mechanisms against myocardial ischaemia-reperfusion

injury appearing after 24 h and lasting for several days.11

Alterations of gene expression of protective and anti-

protective proteins along with KATP channel opening have

been proposed as the main mechanisms for this delayed

protection. The endocannabinoid system is involved in the

protection conferred by LPS, in relation with nitric oxide

production.74 Two endocannabinoids act through inter-

action with G-protein coupled membrane receptors, namely

CB1- and CB2-receptors, which are present throughout the

body.103 Endocannabinoids have been implicated in the

in¯ammatory response. In isolated rat hearts, endocannabi-

noids acting through CB2-receptors and nitric oxide, play a

role in the protection conferred by heat stress against

myocardial ischaemia.52 Hemin is an activator of the potent

antioxidant enzyme heme oxygenase-1 and may play a role

in delayed protection.149 Enhanced expression of heme

oxygenase-1 has been observed during the recovery phase

of porcine myocardial stunning.125 Indeed, in experimental

studies, a signi®cant attenuation of stunning, as evidenced

by enhanced recovery of wall thickening was observed in

animals pretreated for 1 week with hemin.143 Whether

inhalation anaesthetics are capable of elicting late pre-

conditioning is not yet clear.

Remote preconditioning

Ischaemic preconditioning can be generated by short

episodes of myocardial, limb, or visceral ischaemia. In the

heart itself, preconditioning can develop in areas remote

from the preconditioning ischaemic stimulus (for review

see156). This remote preconditioning may involve the

release of adenosine, bradykinin, norepinephrine, and

activation of KATP channels. Systemic effects of localized

ischaemic preconditioning have been reported. This raises

the issue that regional ischaemia of non-vital tissues might

protect remote vital organs.37 In volunteers, transient remote

ischaemia of one limb induced remote ischaemic precondi-

tioning of the opposite limb as evidenced by preservation of

endothelial function (estimated as extent of vasodilator

response).66 Cytokines and other metabolic mediators are

likely to play a role. The autonomic system may also be

involved as well as modulation of platelet, endothelium, and

leucocyte function.

Protective effects of anaesthetics against
ischaemia

Anaesthetics and myocardial stunning

Most inhalation anaesthetics and high dose opioids confer

protection, increasing the rate of myocardial recovery after

reperfusion.58 115 In 1988, Warltier and colleagues142

demonstrated that administration of halothane and iso¯ur-

ane before ischaemia improved the speed of recovery of

function after a brief (15 min) period of ischaemia. After 5 h,

the functional recovery in the presence of inhalation

anaesthesia was 100% vs 50% only in the controls.142

Since then, these observations have been con®rmed repeat-

edly.22 134 However, some studies of isolated heart prepar-

ations showed no protection by inhalation anaesthetics.97 117

More recently, sevo¯urane and des¯urane were shown to

confer cardiac protection.108 109 119 133 135 It is likely that

protection by inhalation anaesthetics is attributable to

pharmacological preconditioning of the heart, as in many

studies the inhalational anaesthetic was given before

ischaemia and reperfusion. Indeed, in some studies the

administration of the inhalation anaesthetic was discon-

tinued before ischaemia-reperfusion and resulted in reduced

infarct size.18 24 Nonetheless, protective effects of inhal-

ation anesthetics were also reported if inhalation anaes-

thetics were administered exclusively during the reperfusion

phase.

Intravenous anaesthetics appear to confer less protec-

tion.23 27 144 Fentanyl and propofol appear to be equiva-

lent.114 In the isolated heart, as opposed to the intact

instrumented heart, propofol has been shown to reduce

infarct size and cellular damage.70 71 82 Propofol-induced

protection was not abolished by block of KATP channels.

While the effects of opioids on infarct size have been well

demonstrated, there are only a few studies of their effects on

myocardial stunning.114 144 In the isolated heart, high

concentrations of fentanyl have been shown to offer

signi®cant protection.58 Protection was mediated by

d-opioid receptors, adenosine A1-receptors, PKC, and

KATP channels.56 57 The role of d-opioid receptors is

supported by the abolition of their protective effect by

naloxone.20 122 131 As wash-out of opioids does not prevent

their effect, they must act as preconditioning agents.2 75 It is

further possible that opioids act bene®cially via a reduction

in adhesion and migration of neutrophils.128 140

Anaesthetics and cardiac preconditioning

Many anaesthetic agents have been shown to reduce infarct

size in experimental models. Not all anaesthetics have the

same ef®cacy. There is greater reduction of infarct size by

halothane, en¯urane, and iso¯urane in comparison with

pentobarbital, ketamine-xylazine, or propofol anaesthesia in

rabbits. Dogs anaesthetized with barbiturates exhibit larger

infarcts than their conscious counterparts.53 This may be
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explained by the observation that barbiturates competitively

antagonize adenosine A1-receptors, a pivotal signalling

pathway in cardiac preconditioning. Indeed, adenosine

receptor antagonists decrease anaesthesia-induced precon-

ditioning.24 113 The same is true of PKC antagonists.134

Albeit not proven, it may be speculated that pharmaco-

logical preconditioning by inhalation anaesthetics may be of

smaller magnitude than ischaemic preconditioning.18

Pharmacological preconditioning by inhalation anaes-

thetics appears to be primarily mediated by stimulation of

adenosine receptors113 and activation of KATP chan-

nels.62 113 Protective effects by inhalation anaesthetics also

occur in the presence of cardioplegic protection. Ischaemic

and anaesthetic-induced preconditioning are not additive

suggesting the same end-effector,12 identi®ed in many

studies as KATP channels. Nonetheless, sevo¯urane can

potentiate late ischaemic preconditioning in an in vivo rabbit

model.87 The signalling components involved in cardiac

protection by inhalational anaesthetics, are similar to

ischaemic preconditioning, but show distinct differences.26

Both sarcolemmal and mitochondrial KATP channels may

mediate anaesthesia-induced preconditioning as demon-

strated in des¯urane-mediated preconditioning.135 Yet,

mitochondrial KATP channels may play the more important

role. Halothane partially blocks sarcolemmal KATP chan-

nels,113 while iso¯urane does not. Anaesthesia-induced

preconditioning is clearly species dependent. Halothane

preconditions in rabbit but not rat or human. Iso¯urane

preconditions in rabbit and human, but not rat (for review

see155 156).

Anaesthetics may also modulate the effects of ischaemic

preconditioning. Several anaesthetic agents have direct

effects on KATP channels (barbiturates) or have prominent

physiological effects that are induced by KATP channels

(iso¯urane, halothane).17 Accordingly, ischaemic precondi-

tioning is abolished by glibenclamide under ketamine-

xylazine anaesthesia but not pentobarbital anaesthesia. In a

comparison of the effects of ischaemic preconditioning

under pentobarbital, iso¯urane, and ketamine-xylazine

anaesthesia, infarct size was not different in the absence

of preconditioning, but the magnitude of infarct size

limitation by ischaemic preconditioning was different

depending upon the basal anaesthesia.38 In the presence of

halothane anaesthesia, nicorandil given before ischaemia

did not demonstrate protective effects, whereas ischaemic

preconditioning did reduce infarct size. Yet, a KATP channel

blocker prevented the combined effect of ischaemia and

nicorandil.90 The complexity of modulatory effects of

anaesthetics on cardiac preconditioning has been substan-

tiated in a cellular model of simulated ischaemia.

Modulatory effects of anaesthetics were demonstrated by

the inhibition of diazoxide-induced mitochondrial KATP

channel opening by R-ketamine, thiopental and pentobarbi-

tal. Conversely, urethane, 2,2,2-trichloroethanol (a main

metabolite of a-chloralose) and fentanyl potentiated the

channel-opening effect of diazoxide. This potentiation

could be blocked by chelerythrine, a speci®c PKC inhibitor.

By contrast, S-ketamine, propofol, xylazine, midazolam

and etomidate do not affect mitochondrial KATP channel

Fig 4 Functional connections between the mitochondrial permeability

transition pore (mPTP) and the oxidative energy production during

ischaemia-reperfusion and pharmacological preconditioning (PC). The

selective adenine nucleotide translocator (ANT) at the inner

mitochondrial membrane (IMM) regulates ATP supply to the cytoplasm

in exchange for ADP, which will be regenerated to ATP in the

mitochondrial matrix (MM) by the ATP synthase (ADP + Pi). The

synthase is driven by the proton gradient across the IMM. The high

proton concentration in the intermembrane space (MIMS) is maintained

by the respiratory chain complexes (I±IV), which are energetically fuelled

by the tricarboxylic acid cycle (TCAC) in the MM. On its way out of the

MM, ATP passes through the ANT and enters a channel formed by an

octameric complex of the mitochondrial creatine kinase (CK) where its

gamma-phosphoryl is transferred to creatine (Cr) to produce creatine

phosphate (CrP), which leaves the mitochondrion through the voltage-

dependent anion channel (VDAC or porin) in the outer membrane

(OMM) into the cytoplasm. Wherever energy is required,

transphosphorylation from CrP to local ADP yields ATP for immediate

use. The Cr±CK system serves as energy shuttle between the production

centre and the place of consumption. The VDAC allows solutes to pass

up to a molecular weight of 5000 Da. The nucleotide conductivity of

ANT is controlled by cyclophilin-D (CP) at its inner opening. Binding of

Ca2+ (which is increased during ischaemia-reperfusion) to CP induces

ANT to form a non-selective channel for solutes up to a molecular weight

of 1500 Da. Cyclosporin-A can bind to CP and prevents channel opening,

while atractyloside binds to ANT itself and favours channel opening.

During ischaemia cessation of ATP production produces a decrease of

diffuse K+ in¯ux. Consequently, the MM shrinks somewhat at the

expense of an increase of the MIMS leading to destabilization of the

complex between ANT, CK and VDAC. On reperfusion additional ROS

and Ca2+ trigger opening of the ANT channel, which then seems to join

directly to the VDAC forming a non-selective mega-pore, the mPTP. This

leads to the collapse of the IMM potential, to massive MM swelling and

disruption of the OMM. As K+ acts as the main MM volume regulator,

activation of K+ in¯ux represents the most powerful mechanism to

prevent mitochondrial destabilization and therewith irreversible

destruction and cell death. Both ischaemic and pharmacological PC

activate the mitochondrial ATP-dependent potassium channels (mK-ATP)

affording myocyte protection against ischaemia-reperfusion injury. In

addition, a large conductance Ca2+-activated potassium channel (K-Ca)

known to exist in the surface membrane of vascular smooth muscle cells

was also found in the MIM. This channel is regulated by physiological

variations of cytosolic Ca2+, and when selectively activated, it also

protects the myocytes against ischaemia-reperfusion injury.30 43 83 157
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activity.152 These observations illustrate the complex inter-

ference of anaesthetics with ischaemic preconditioning and

stress the concept of anaesthetics acting as modulators of

cardiac preconditioning.

To date, there are few data on the possibility of inhalation

anaesthetics conferring late preconditioning, whereas

delayed protection by opioids is well established.121 Kehl

and colleagues60 examined the effect of iso¯urane adminis-

tration 24 h before a 60 min coronary occlusion followed by

3 h reperfusion in a canine model. While iso¯urane exerted

early protection, there was no late protection. By contrast,

delayed preconditioning was observed in a rabbit model.137

Finally, improved collateral blood ¯ow may also play a

role in the bene®cial effects elicited by anaesthetics. Indeed,

sevo¯urane increases collateral ¯ow, an effect not reversed

by glibenclamide.64 In addition, halothane, iso¯urane, and

sevo¯urane reduce the number of neutrophils45 73 and

platelets44 sequestered in the coronary vasculature after

ischaemia. This may contribute to the observed bene®cial

effects. Inhalation anaesthetics further suppress the post-

ischaemic expression of CD11b45 and thus decrease

neutrophil adhesion to the endothelium.86 However, sevo-

¯urane does not reduce the expression of glycoprotein IIb/

IIIa, a platelet adhesion molecule involved in the platelet±

endothelium interaction.44

Iso¯urane

In the absence of ischaemia, iso¯urane causes opening of

KATP channels, an effect blocked by sulfonylureas.61 This

results in a reduction in infarct size in experimental

animals.63 Iso¯urane also decreases infarct size in an

in vitro model of human myocardium.113 Sarcolemmal

and mitochondrial KATP channels appear to be invol-

ved.61 106 113 133 136 Iso¯urane increases the open probability

of the sarcoplasmic KATP channel for a given ATP

concentration.39 In a cellular model, iso¯urane signi®cantly

enhanced the diazoxide-mediated activation of mitochon-

drial KATP channels. This effect was completely blocked by

chelerythrine (a PKC inhibitor). Pretreatment with inhal-

ation anaesthetics potentiated the diazoxide-mediated pro-

tection against ischaemia. Cardioprotection was unaffected

by the sarcoplasmic KATP channel blocker HMR-1098, but

sensitive to modulation of nitric oxide and adenosine-Gi

signalling pathways.153 Administration of iso¯urane before

aortic cross-clamping in patients undergoing coronary

artery bypass surgery causes cardiac index to be higher

after cardiopulmonary bypass with less changes in ST-

segments than in the control group. However, there were no

differences in terms of arrhythmias.42 Thus, iso¯urane may

offer some additional protection to cardioplegia. These

®ndings are consistent with the observation of lower (albeit

not statistically signi®cant) perioperative levels of CK-MB

and troponin reported by Belhomme8 when iso¯urane is

used. Moreover, iso¯urane was found to increase 5¢-
nucleotidase activity in atrial tissue indicating increased

PKC activity.8

Sevo¯urane

Sevo¯urane reduces infarct size in dogs via opening of KATP

channels.133 Preservation of myocardial blood ¯ow through

collateral circulation, observed with sevo¯urane, is inde-

pendent of KATP channels. In sepsis, ultrastructural changes

in the myocardium have been documented and sevo¯urane

protected cardiac output in septic (caecal ligation and

perforation) rats.124 Recently, the ®rst clinical double-

blinded multicentre study has shown sevo¯urane to protect

myocardium and kidney in patients undergoing coronary

artery bypass grafting.54 This study also visualized for the

®rst time PKC translocation (predominantly isoforms d and

e) to subcellular targets such as the sarcolemma, mitochon-

dria, intercalated disks, and nuclei in response to sevo-

¯urane. Moreover, the observed renoprotective effect of

sevo¯urane raises the intriguing possibility that systemic-

ally administered sevo¯urane may confer multiorgan

protection in high-risk patients.

Des¯urane

In isolated human atrial trabeculae, des¯urane improved the

recovery of isometric contraction after a 30 min period of

anoxia. The preconditioning effect of des¯urane was

abolished by glibenclamide, 5-hydroxydecanoate (5-HD),

DPX (an adenosine receptor blocker), phentolamine, and

propranolol.41 These observations suggest that precondi-

tioning by des¯urane is mediated by mitochondrial KATP

channels,41 adenosine A1-receptors, and a- and b-adreno-

ceptors. In contrast, selective block of sarcolemmal KATP

channels did not reduce des¯urane-induced precondition-

ing, while it abolished anoxia-induced preconditioning.

Des¯urane increases sympathetic activity in volunteers and

releases catecholamines from myocardial stores in rat and

human myocardium.40 Preconditioning by des¯urane may

thus be, at least partly, elicited by stimulation of the a/b-

adrenoceptor pathways.77

Pharmacological interventions by
nonanaesthetic agents currently used for the
prevention of perioperative ischaemia

Several classes of drugs have been proposed in order to

reduce the risk of ischaemic complications of anaesthesia

and surgery. However, based on current clinical data, only

beta-blockers, a2-adrenoceptor agonists, and possibly

statins may have the potential to affect perioperative

cardiovascular outcome.

Nitroglycerin

While nitroglycerin is used successfully in the treatment of

myocardial ischaemia, there is no evidence that its prophy-

lactic administration before anaesthesia and surgery

decreases the risk of perioperative cardiac complications.127

Calcium channel blockers

Though effective in the management of ischaemic heart

disease, Ca2+ channel blockers have never been shown to
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offer any protection against perioperative cardiac complic-

ations of anaesthesia and surgery.126 127 This absence of

protection seems surprising in view of the strong antioxidant

effect of certain calcium channel blockers.147

Adenosine modulators

These compounds facilitate the release of the coronary

vasodilator adenosine by the ischaemic myocardium,

thereby improving collateral blood ¯ow toward the com-

promised area. Though promising results were obtained,80

development of the only agent tested in clinical trials,

acadesine, was stopped.

a2-Adrenoceptor agonists

There is renewed interest in the use of clonidine,

dexmedetomidine, and (temporarily, as it is not currently

being further developed for clinical use) mivazerol; these

drugs reduce the level of sympathetic activity and make the

circulation more stable. Clonidine decreases the risk of

perioperative myocardial ischaemia95 and a recent meta-

analysis has also shown a reduction in the risk of adverse

outcome.127 Mivazerol has been tested in a large multicentre

trial and was shown to decrease the incidence of cardiac

complications in vascular surgical patients but not in non-

vascular surgical patients,98 yet its development was

stopped.

Nicorandil

This drug is both a nitrate and a KATP channel opener. It is

effective in the management of ischaemic heart disease and

its associated dysrhythmias. It may prove useful in the

perioperative prevention of cardiac complications.55 In

clinical practice, nicorandil, a KATP channel opener and

nitrate, is widely used in the treatment of angina. Nicorandil

induces myocardial preconditioning. In isolated human

heart muscle nicorandil conferred cardioprotection (im-

proved recovery of function in a hypoxia-reoxygenation

model). This effect was abolished by ischaemic precondi-

tioning.16 In a rabbit model early treatment with nicorandil

(pre-ischaemia) decreased infarct size, while nicorandil

administration after ischaemia was ineffective. Ischaemic

preconditioning reduced infarct size and the combination of

ischaemic preconditioning and nicorandil showed ef®cacy

intermediate between ischaemic preconditioning and before

administration of nicorandil.49 The effect of nicorandil was

blocked by 5-hydroxydecanoate, a KATP channel blocker.

Thus, nicorandil appears to protect by opening KATP

channels, and to interact with ischaemic preconditioning.

By contrast, nicorandil appears to offer additional protection

when administered with iso¯urane, in terms of functional

recovery of the stunned myocardium.105

Statins

In a case-controlled study, Poldermans and colleagues107

evaluated the effects of statins on perioperative mortality in

patients undergoing major vascular surgery. In statin-treated

patients, the risk for perioperative mortality was ~20% of

that observed in non-statin-treated patients. The authors

concluded that perioperative statin use may reduce peri-

operative mortality in high-risk vascular patients.

b-Blockers

These drugs, at present, occupy centre stage for cardiac

prophylaxis because several studies have shown a reduction

in the incidence of cardiac complications of anaesthesia and

surgery in patients deliberately given beta-blockers

prophylactically.154 The bene®cial effects of perioperative

b-blocker administration are discussed in detail in another

article in this issue.

Conclusions

Myocardial ischaemic injury is a potential perioperative

threat. Ischaemia induces a palette of myocardial states with

distinct pathophysiological backgrounds ranging from the

paradoxically bene®cial effects of preconditioning on one

side to the complete loss of cellular integrity and to cell

death on the other side. Preconditioning mimicking agents

such as inhalation anaesthetics and opioids induce a

pronounced protective cardiac phenotype and thus may

decrease, along with b-blockers, a2-adrenoceptor agonists,

and anti-in¯ammatory/preconditioning-mimicking statins,

the deleterious effects of myocardial ischaemia in peri-

operative medicine.
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