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Abstract—The Range-Doppler Algorithm (RDA) and the
Chirp-Scaling Algorithm (CSA) process Synthetic Aperture
Radar (SAR) data with approximations to ideal SAR processing.
These approximations are invalid for data from systems with wide
beamwidths, large bandwidths, and/or low center frequencies.
While simple and efficient, these frequency-domain methods are
thus limited by the SAR parameters. This paper explores these
limits and proposes a generalized chirp-scaling approach for
extending the utility of frequency-domain processing.

We demonstrate how different order approximations of the
SAR signal in the two-dimensional frequency domain affect
image focusing for varying SAR parameters. From these results,
a guideline is set forth which suggests the required order of
approximation terms for proper focusing. A proposed generalized
frequency-domain processing approach is derived. This method
is an efficient arbitrary-order chirp-scaling algorithm that pro-
cesses the data using the appropriate number of approximation
terms. The new method is demonstrated using simulated data.

I. INTRODUCTION

NEW synthetic aperture radar systems operating with wide
bandwidths at low frequencies [1]–[4] attract attention

due to the potential for improving the data quality of existing
applications and investigating new uses [5]–[10]. At low
frequencies the approximations made in formulating a number
of SAR processing algorithms, such as the Range-Doppler
Algorithm (RDA) and the Chirp Scaling Algorithm (CSA),
are no longer valid [11], [12]. Some of the errors caused by
many of these approximations have been addressed, together
with suggested remedies, in previous work [13]–[18]. Also
at low frequencies, the wider beamwidth required for high
azimuth resolution causes problems with the center beam
approximation used in motion compensation [18], [19] and
in the chirp scaling process used in the CSA [20].

Processing for low frequency SAR has typically been
approached with inversion methods such as the Fourier-
Hankel [21] and the wavenumber domain Omega-K (ω-k)
[22]–[24] algorithm or time-domain processing methods [25]–
[27]. These methods avoid the approximations that make
RDA and CSA problematic at low frequencies and wide
beamwidths, but unfortunately, they are more complex and
computationally burdensome. The ω-k processing requires a
costly interpolation to perform the Stolt mapping, and the
algorithm makes it difficult to implement range-dependent
motion compensation. Time-domain methods can be very
precise for all SAR configurations, but are even more ineffi-
cient. Specialized hardware, such as graphics processing units
(GPUs), has been shown to accelerate time-domain SAR and
tomographic SAR processing [28]. While efforts have been

made to modify the CSA to efficiently handle the effects of
wide aperture [18], to extend the ω-k algorithm to handle
range-dependent motion compensation [22], [29], [30], and to
streamline the time-domain methods [26], [27], the common
frequency-domain methods (RDA and CSA) are still widely
used, despite their limitations, because of their simplicity and
processing efficiency. This paper explores the limits of valid
processing for these frequency-domain methods and proposes
a generalized chirp-scaling SAR processing algorithm that
efficiently extends the utility of frequency-domain processing
for SAR systems with wide beamwidths, large bandwidths,
and low frequencies.

In Section II, the general SAR signal in the two-dimensional
frequency domain is derived. In Section III, the approxima-
tions made to this signal are analyzed. For approximations
of an arbitrary number of terms, an expression is derived
for the phase error at any point in the frequency support
band. Simulated data is used to analyze the effects that
these phase errors have on image focusing with different
order approximations and varying SAR parameters. Section IV
provides a guideline for determining the number of terms in
the approximation required for properly focusing the SAR
image. Finally, a generalized chirp-scaling SAR processing
algorithm is derived that includes the appropriate number of
terms.

II. THE GENERAL SAR SIGNAL

For our analysis, we consider only the phase functions
of the SAR signal, ignoring the initial phase. As in the
development presented in [31], we can describe the phase of
the demodulated baseband SAR signal as

Φ0 = −4πf0R(η)/c + πKr(τ − 2R(η)/c)2 (1)

where f0 is the carrier frequency. R(η) is the range to a given
target at slow time η. Kr is the range, or fast time, chirp rate
and τ is fast time.

The first term describes the azimuth modulation: it consists
of the phase left over after demodulation. It is purely a function
of the carrier frequency and the changing range to a target.
The second term in Eq. (1) is the transmit chirp delayed by
the two-way travel time to the target. If we were to reduce the
bandwidth to a single frequency, the second term would go to
zero, but we would still have the same azimuth modulation.

The approximations made in many SAR processing algo-
rithms are calculated in the wavenumber, or two-dimensional
frequency domain. The derivation of the general SAR signal
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in the wavenumber domain, as found in Appendix A, results
in

Φ1RA = −
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c
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D(fη) =
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c2f2
η

4v2f2
0

, (3)

R0 is the range of closest approach, fτ is range frequency,
and fη is azimuth frequency.

Eq. (2) is the phase of the SAR signal in the wavenumber
domain. For a target at a given range Rref , the target can be
ideally focused with the reference function multiply
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This works regardless of squint, beamwidth, and chirp band-
width.

III. SAR APPROXIMATIONS

The CSA and RDA make approximations to Eq. (2) which
break down at low-frequencies, large beamwidths, and large
bandwidths. The ω-k algorithm can be a good choice in
these situations because it uses the exact representation of
Eq. (2) and applies Eq. (4) for a reference range while Stolt
interpolation corrects for other ranges. This precision comes
at the cost of increased complexity and for precise Stolt
interpolation, the processing time increases compared to the
CSA and RDA. Also, the ability to apply range-dependent
motion compensation is hindered with the ω-k algorithm [22],
[30].

The CSA and RDA approximations are formed using a
Taylor series approximation of Eq. (2). The square root term
can be expanded as
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RDA keeps only the 0th order term

ΦRDA ≈ −

4πR0f0

c
· [D(fη)] −

πf2
τ

Kr

(6)

which makes the algorithm relatively simple. The first term
of Eq. (6) is the azimuth modulation, corrected in the range-
Doppler domain during azimuth compression. The second term
is the chirp modulation corrected in the range compression
step. Range-cell migration (RCM) correction is an interpola-
tion that makes up for the neglected first order RCM term
while the secondary range compression potentially compen-
sates for neglected higher order terms.

The CSA keeps up to the second order term [31], [32]

ΦCSA ≈ −πf2
τ /Kr − 4πR0f0/c ·

[

D(fη) +
fτ

f0D(fη)
+

D2(fη) − 1

2f2
0 D3(fη)

f2
τ

]

(7)

as shown inside the square brackets; the first term is the
azimuth modulation, the second term is the range-cell mi-
gration, and the third term is cross-coupling between the
range and azimuth frequencies. Important variations of the
CSA have been introduced to address the limitations of this
approximation. In the extended CSA of [13], a third-order
chirp-scaling term is introduced for high squint with integrated
motion compensation. Then in [14], the non-linear chirp-
scaling algorithm is derived which includes a third-order
SAR signal model, phase filter, and chirp-scaling parameter.
The latter two are carefully chosen such that the range-
dependence of the range-cell-migration (RCM) and secondary-
range-compression (SRC) is eliminated. Another modification
to the extended CSA in [15] is the inclusion of a range-
scaling term which controls the bandwidth increase associated
with chirp-scaling. Finally the quartic-phase algorithm [16]
extends these concepts including a fourth-order phase filter and
chirp-scaling parameter, a range-scaling term, and an improved
model of range-dependence for SRC

These algorithms are based on specific order approxima-
tions, but more generally, we can expand Eq. (5) to an arbitrary
number of terms:
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The phase error due to this approximation can be expressed
as

ΦError = Φ1RA +
πf2

τ

Kr

+
4πR0f0
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· Υ(fτ ) (9)

= −
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)

which is a function of four parameters:
1) range to target, R0

2) center frequency, f0

3) range frequency, fτ , and
4) azimuth frequency, fη .

The phase error gets larger when the range increases, the center
frequency decreases, the maximum range frequency increases,
and/or the maximum azimuth frequency increases.

The limits of fτ are determined by the chirp bandwidth.
For a chirp centered at zero after demodulation, the maximum
and minimum fτ are plus and minus half the bandwidth. For
a chirp starting at zero, the maximum fτ is the bandwidth.
Thus as the bandwidth increases, the maximum fτ increases.
A larger fτ means a larger approximation phase error in Eq. 9.
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The maximum and minimum azimuth frequencies are a
function of the beamwidth θ and squint ϑ

fηMAX = 2
f0

c
v sin

(

θ

2
+ ϑ

)

(10)

fηMIN = 2
f0

c
v sin

(

−

θ

2
+ ϑ

)

. (11)

fη is only used in Eq. 9 as part of D(fη), which can be
rewritten at maximum fη as

D(fηMAX ) =

√

1 − sin2

(

θ

2
+ ϑ

)

, (12)

thus the azimuth frequency dependence of the phase error
in Eq. 9 is dependent on the beamwidth and independent of
velocity and PRF.

Simulated data are used to demonstrate how changing the
radar parameters affects the azimuth focusing. A nominal
choice of SAR parameters is chosen, with images created with
no approximations and with the CSA approximations. The four
paramters that affect the phase error are individually varied to
demonstrate how the focusing changes with these parameters.
The initial radar parameters are a center frequency of 1.75
GHz, a bandwidth of 500 MHz centered at zero, an altitude
of 3050 meters, and a beamwidth 19.3◦ wide. An image of
a single point target, ideally processed using Eq. 2 without
approximations (ω-k algorithm), is shown in Fig. 1. The same
data processed with the CSA (second order approximation) is
shown in Fig. 2.

The CSA was used in producing Figs. 3-6, which show the
results of changing, respectively, the range to target, the center
frequency, the chirp bandwidth, and the antenna beamwidth.
The azimuth resolution changes with center frequency and
beamwidth, Fig. 7 shows two examples of changing the
beamwidth and center frequency to keep the along-track reso-
lution the same. The results from these figures are summarized
in Table I.

IV. SAR PROCESSING GENERALIZATION

For any given set of SAR system parameters, a generalized
frequency-domain SAR processor must:

1) Determine the number of terms (order) from Eq. (8) that
is required for proper focusing

2) Efficiently process the data taking into account those
terms.

A. Required Order Determination
One approach to accomplishing the first step is by consid-

ering the phase error from Eq. (9). This error can be viewed
and analyzed by computing the error for every point in the
support band in the two-dimensional frequency domain. Phase
errors greater than a few tenths of a radian indicate that a
portion of the data is being processed incorrectly. We choose
a threshold of π/10 to be excess error. The portion of the
support band with phase errors greater than π/10 can be used
to predict the focusing accuracy of a target. This percentage
is calculated for each example in Table I and the results are

shown in Fig. 8. From this graph we devide on a guideline: if
less than 30% of the support band has a phase error greater
than π/10, then one can predict less than a 20% loss in
azimuth resolution defocusing. Depending on error tolerances
of a given application, 20% loss of focus could be inadequate.
In that case, processing the data with more of the higher order
terms from Eq. (8) is advised.

If the third-order terms are included in processing the data
from Fig. 2, the percentage of phase errors greater than π/10
drops to 10.6% and the focusing is indistinguishable from
the the ideal (1.9% defocus), as shown in Fig. 9. Dropping
the frequency to 1.25 GHz and increasing the beamwidth to
27.1◦ maintains the theoretic azimuth resolution of 22.6 cm,
but the percentage of phase errors greater than π/10 increases
to 31.2%, and Fig. 10 shows that the focusing decreases by
16.7%, which is expected based on the guidelines of Fig. 8.

As another example, data is simulated with a center fre-
quency of 800 MHz, a bandwidth of 500 MHz, a beamwidth
of 40.3◦, and range to target 1755.6 m. The data is repeatedly
processed with terms of increasing order. The results are
shown in Fig. 13 and summarized in Table II. Again we find
that the defocusing is reduced to about 20% as the percent of
phase error greater than π/10 drops to about 30%.

The above guidelines suggest the order of the terms required
for proper focusing. Efforts have been made to develop algo-
rithms for efficiently processing data while keeping the higher
order terms. As an example, from the algorithms mentioned
in Section III, the non-linear CSA algorithm of [14] keeps
up to the 3rd order term of Eq. (8). Compared to the CSA,
this method requires two additional range FFT’s and a phase
multiply. If terms higher than the 3rd order are needed for
proper focusing, something more involved than the non-linear
CSA is required. Such a method is derived below.

There is an upper bound for the number of approximation
terms that can be used. An extreme situation is simulated with
a center frequency of 350 MHz, a bandwidth of 500 MHz,
an antenna beamwidth of 80◦, and a range to target of 3003
m. Fig. 11 shows that the highest order approximation that
yields the best results is the 6th order. Using terms higher
than this are actually detrimental to the overall focusing.
As seen in Fig. 12 and in Eq. (8), the higher order terms
become increasingly important at the edges of the support
band. The terms come in alternating positive and negative
pairs which largely cancel each other out, and above the
6th order the terms are too unstable for practical use. With
this particular set of parameters, however, even when using
the 6th order approximation, 61.6% of the support band has
a phase error greater than π/10. Thus a frequency domain
processing method is inadequate for focusing this data. This
result suggests that there is a definite point at which SAR
processing requires an ω-k or time-domain approach, in such
cases, a frequency-domain approach should not be used.

B. Generalized SAR Processing Algorithm
The goal is to develop a new general processing scheme

which efficiently accounts for as many higher order terms as
dictated by the SAR parameters and the desired precision. Ide-
ally, each additional term from Eq. (8) should add minimally
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TABLE I
SUMMARY OF THE SIMULATION PROCESSING PARAMETERS AND RESULTS FOR FIGS.1-7. THE “DEFOCUS FACTOR” IS THE PERCENT INCREASE IN

MEASURED AZIMUTH RESOLUTION OVER THE THEORETICAL AZIMUTH RESOLUTION. THE THEORETICAL AZIMUTH RESOLUTION FOR AN UNWEIGHTED
APERTURE IS (0.89 · c/(4f0sin(θ/2)).

Range to Center Chirp Antenna Theoretical Measured Defocus Percent of Phase
Target (m) Frequency Bandwidth Beamwidth (◦) Azimuth Azimuth (m) Factor (%) Error Greater

(GHz) (MHz) Resolution (m) Resolution (m) Than π/10 (%)
Fig. 1 3053.2 1.75 500 19.3 22.6 22.6 0.0 0.0
Fig. 2 3053.2 1.75 500 19.3 22.6 29.0 28.1 41.0
Fig. 3 1531.4 1.75 500 19.3 22.6 24.5 8.3 31.2

6101.6 1.75 500 19.3 22.6 32.0 41.5 50.1
Fig. 4 3053.2 1.5 500 19.3 26.4 33.9 28.5 45.2

3053.2 2 500 19.3 19.8 31.9 41.1 37.3
Fig. 5 3053.2 1.75 250 19.3 22.6 23.7 4.6 11.4

3053.2 1.75 500 19.3 22.6 31.2 37.9 67.0
Fig. 6 3053.2 1.75 500 9.6 45.5 47.3 3.9 20.8

3053.2 1.75 500 29.0 15.1 25.1469 66.4 51.7
Fig. 7 3053.2 1.5 500 22.5 22.6 30.6 35.4 49.2

3053.2 2 500 16.9 22.6 27.6 22.1 33.4
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Fig. 1. Simulated SAR data of a single point target at a range of 3053.2 m, a center frequency of 1.75 GHz, a chirp bandwidth of 500 MHz and an antenna
beamwidth of 19.3◦, ideally processed without approximations (ω-k, Eq. (4)). The left-most plot is a magnitude image of the focused target. The next figure
is a contour plot with contours spaced 3dB apart. The next plot is a range slice through the center of the target, plotted in dB, the azimuth resolution is
measured at the 3 dB point of this figure. The right-most image shows the phase error over the support band due as in Eq. (9). The parameters and results
for this data are summarized in Table I.
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Fig. 2. Simulated SAR data of a single point target at a range of 3053.2 m, a center frequency of 1.75 GHz, a chirp bandwidth of 500 MHz and an antenna
beamwidth of 19.3◦, processed using the CSA (2nd order approximation). The plots are arranged as in Fig. 1. Parameters and results are summarized in
Table I.

to the computational burden. The algorithm derived below is
summarized in Table III. For order n, the high-order phase and
chirp-scaling terms up to the nth order are chosen such that
the range dependence of the range-cell migration and range-
frequency rate is removed.

We start with the approximation of the phase of our signal
in the two-dimensional frequency domain, Eq. (2), which we
express as ΦSS in row 4 of Table III, where Υi is the ith
derivative of Υ(fτ ) evaluated at fτ = 0, as in Eq. (5).

This signal is multiplied by a higher-order phase filter,
HHOPF in row 5 of Table III. The Xi terms are solved later

in the derivation to remove the range-dependence of the higher
order terms.

The inverse range Fourier transform is approximated by the
principle of stationary phase (POSP). Assuming the higher-
order terms are small, as in [14], [16], [33], the signal in the
range-Doppler domain can be shown to be ΦsSm in row 6 of
Table III, where, as in [14], [31],

Km =
Kr

1 −

KrcR0f2
η

2v2f3
0 D3(fη)

(13)

and τd = (2R0)/(cD(fη)). τd is the trajectory of a target with
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Fig. 3. Simulated SAR data of a single point target at ranges of 1531.4 m (top) and 6101.6 m (bottom), a center frequency of 1.75 GHz, a chirp bandwidth
of 500 MHz and an antenna beamwidth of 19.3◦, processed using the CSA. The plots are ordered as in Fig. 1. Compared to Fig. 2, the measured azimuth
resolution improves at shorter range and worsens at longer range.
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Fig. 4. Simulated SAR data of a single point target at a range of 3053.2 m, a center frequency of 1.5 GHz (top) and 2.0 GHz (bottom), a chirp bandwidth
of 500 MHz and an antenna beamwidth of 19.3◦, processed using the CSA. The plots are arranged as in Fig. 1. Compared to Fig. 2, the different center
frequencies cause a change in the theoretical azimuth resolution, with the higher frequency focusing more accurately.

range of closest approach R0.
The chirp-scaling is performed by a phase multiply of orders

up through n. The chirp-scaling phase is HCS in row 7 of
Table III, where the qi’s are the scaling coefficients, which we
will solve for, and τref = (2Rref )/(cD(fη)), which is the
trajectory for a target at reference range Rref .

After chirp-scaling the signal phase is ΦsSz in row 8 of
Table III, where the first term is the along-track modulation,
which we will ignore for the moment. The remaining terms,
shown as the sum of Ci, are formed by making the substitu-
tions

τref = τs − α∆τ (14)
τd = τs − (α − 1)∆τ (15)

where ∆τ = (2(R0 − Rref ))/(cD(fη)), the difference be-
tween τd and τref , and α is a scaling term determined by the
Doppler centroid, fdc,

α(fη) =

√

1 −
c2f2

η

4v2f2
0

√

1 −
c2f2

dc

4v2f2
0

(16)

which simplifies to D(fη) when there is no squint. Carefully
expanding the result, and reordering the terms as a series of
(τ − τs) yields

C0 + C1 (τ − τs) + C2 (τ − τs)
2
. . . Cn (τ − τs)

n (17)
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Fig. 5. Simulated SAR data of a single point target at a range of 3053.2 m, a center frequency of 1.75 GHz, a chirp bandwidth of 250 MHz centered at
zero (top) and 500 MHz centered at 250 MHz (bottom), and an antenna beamwidth of 19.3◦, processed using the CSA. The plots are arranged as in Fig. 1.
Compared to Fig. 2, the top figure shows an improvement in azimuth focusing with a loss in range resolution while the bottom image shows degraded azimuth
focusing.
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Fig. 6. Simulated SAR data of a single point target at a range of 3053.2 m, a center frequency of 1.75 GHz, a chirp bandwidth of 500 MHz and an antenna
beamwidth of 9.6◦ (top) and 29.0◦ (bottom), processed using the CSA. The plots are arranged as in Fig. 1. Compared to Fig. 2, the changing beamwidths
cause a change in the theoretical azimuth resolution.

where Ci is defined as

C0 = Cx0 + πKm∆τ2 (α − 1)
2

C1 = Cx1 + 2πKm (α − 1) ∆τ

C2 = Cx2 + πKm

Ci = Cxi for i > 2 (18)

with

Cxi =
∑n

h=i

(

h!
i!(h−i)!π (α∆τ)(h−i) qh

)

+ (19)

∑n
h=i









2πKi
m(∆τ(α−1))h−i

(

f0Υh(2Rref +∆τD(fη )c)
c

−

h!Xh
2

)

i!(h−i)!









where Xi = 0 and Υi = 0 for i < 3 and qi = 0 for i < 2.
The range-dependent range frequency rate Km is approxi-

mately expressed as the sum of Kf , which is Km at a reference
range, and ∆τ . We first define

Ks = −

c2f2
η

4v2f3
0 D2(fη)

(20)
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Fig. 7. Simulated SAR data of a single point target at a range of 3053.2 m, and a chirp bandwidth of 500 MHz, processed using the CSA. The plots are
arranged as in Fig. 1. To maintain the same theoretical azimuth resolution as Fig. 2, the center frequency and antenna beamwidth are both changed in these
figures. The top row has a lower frequency (1.5 GHz) and larger beamwidth (22.5◦) while the bottom row has a higher frequency (2.0 GHz) and smaller
beamwidth (16.9◦), with results in Table I.
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Fig. 8. From the data in Table I, the amount of defocusing is plotted versus the percentage of phase errors greater than π/10 in the support band. The
general trend is emphasized with a fitted curve. From this we decide that in order to have less than a 20% loss in azimuth focus, the percentage of phase
errors in the support band greater than π/10 should be less than 30%.
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Fig. 9. Simulated SAR data of a single point target identical to Fig. 2, processed including third order approximation terms. The measured azimuth resolution
is 23.0 cm, essentially equivalent to the theoretic value of 22.6 cm.
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Fig. 10. Simulated SAR data of a single point target with a center frequency of 1.25 GHz, a beamwidth of 27.1◦, and a 500 MHz bandwidth, processed
with third-order approximations. The percent of the support band with a phase error greater than π/10 is 31.2%, this results in a measured azimuth resolution
of 26.8 cm, a 16.7% loss of focus.
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Fig. 11. In an extreme SAR situation, with a center frequency of 350 MHz, a 500 MHz bandwidth, a 80◦ beamwidth, and a 3003 m range to target, the top
plot shows the approximation order closest to ideal over the support band, or the approximation order with the smallest error at each point over the support
band. Interestingly enough, the sixth-order approximation is the best over the usable area of the support band with higher-order approximations performing
worse. The SAR data is processed using the 6th order approximation, but even so, 61.6% of the support band has a phase error greater than π/10, and the
measured azimuth resolution is 59.6 cm, a 101.5% defocus from the theoretic resolution of 29.6 cm.
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Fig. 12. The maximum magnitude of the phase error for different order approximations, as given by Eq. (9) for a 500 MHz bandwidth at 1.75 GHz (left)
and 800 MHz (right). The top row shows the errors out to the maximum beamwidth of 180◦ while the bottom row focuses on beamwidths up to 60◦. As the
center frequency decreases, higher order approximations are required, even at small beamwidths, to get small phase errors. In addition, at lower frequencies
a much larger beamwidth is required to maintain the same azimuth resolution, making it doubly important to account for the higher order terms. At extreme
values, the higher order terms become dominate, marking the boundary of utility for frequency domain SAR processing.

then equivalent to Eq. (13)

Km = −

Kf

−1 + Ks∆τKf

(21)

We Taylor expand Km in terms of ∆τ , and keep up to the

second order,

Km ≈ Kf + KsK
2
f∆τ + K2

sK3
f∆τ2 (22)

Each Ci for i > 0 is expressed as a series of ∆τ , for
example

C1 = 2π (αKf + q2α − Kf ) ∆τ (23)
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Fig. 13. Simulated SAR data of a point target at the reference range with a center frequency of 800 MHz, a bandwidth of 500 MHz, a beamwidth of 40.3◦,
and range to target 1755.6 m. Approximation orders two through six and ideal processing are used with results summarized in Table II. The top row shows
ideal processing. Approximation orders two through six are shown in rows two through six respectively.

+

(

πK3
f
(α−1)2(2f0Υ3Rref −3X3c)

c
+2πKsK2

f (α−1)+3πq3α2

)

∆τ2

+ . . .

When the coefficients of ∆τ are zero, the range variations

are eliminated. For the linear and quadratic terms of ∆τ ,
setting them equal to zero results in 2n − 3 equations for
2n − 3 unknowns, for example

2π(αKf+q2α−Kf )=0 (24)
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Fig. 14. The processed image of a second point target from the simulations of Fig. 13 more than 300 m away from the reference range. The top figure
shows this target after 3rd order processing and the bottom figure shows the results of the 4th order processing. The generalized processing is designed to
remove range dependence, demonstrated by the fact that the focusing of this target improves when processed with a higher-order approximation.
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Fig. 15. The same data from Fig. 13 processed with an approximation to the generalized algorithm, shown here is the 4th order results. A processing time
savings of 30% comes at the cost of higher sidelobes.

TABLE II
THE NUMERICAL RESULTS FROM THE IMAGES IN FIG. 13.

Approximation Theoretic Azimuth Measured Azimuth Defocus Percent of Phase Processing Time as
Order Resolution (cm) Resolution (cm) Factor (%) Error Greater Than π/10 (%) a multiple of CSA

2nd Order (CSA) 23.7 36.6 54.4 70.3 1
3rd Order 23.7 30.0 26.6 51.2 2.2
4th Order 23.7 29.1 22.7 33.9 3.6
5th Order 23.7 28.3 19.4 20.0 5.4
6th Order 23.7 27.7 16.8 10.1 7.2

Ideal 23.7 23.7 0.1 0.0 6.85

πK3
f
(α−1)2(2f0Υ3Rref −3X3c)

c
+2πKsK2

f (α−1)+3πq3α2=0

πK3
f
(α−1)(2f0Υ3Rref −3X3c)

c
+πKsK2

f+3πq3α=0

etc.

We solve for qi and Xi in Table IV
The linear and quadratic terms of ∆τ in each Ci for i > 0

become zero, while the higher order terms are very small and
can be neglected. This results in the SAR signal phase being
expressed as in the second part of row 8 of Table III.

A range FFT takes the signal into the two-dimensional
frequency domain, resulting in ΦSS2 in row 9 of Table III.
The signal is multiplied by a range matched filter, HR in row
10 of Table III.

A range inverse Fourier transform is then calculated, re-
sulting in a signal with a phase that is compensated by an
azimuth compression and residual phase compensation Haz

in Table III. An inverse azimuth Fourier transform results in
the focused image.

This generalized method was applied in processing the data
shown in Fig. 13 and Fig. 14. Significant improvements in
focusing are seen, as detailed in Table II.

Of note is the relationship of this algorithm with those
previously developed. When n = 2, this algorithm simplifies
to the CSA. When n = 3, it simplifies to the non-linear CSA
[14], without the extra orbital geometry term. If the α term is
coupled with a β term that scales the range bandwidth, so that
everywhere there is an α it becomes αβ, then when n = 2
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TABLE III
NTH-ORDER GENERALIZED CHIRP-SCALING PROCESSING FLOW

Action Parameter Value

1. Digitize SAR Signal → ejΦ0 Φ0 = −4πf0R(η)/c + πKr(τ − 2R(η)/c)2

2. Azimuth FFT

3. Range FFT → ejΦ1RA Φ1RA = −
4πR0f0

c

√

D2(fη) + 2fτ

f0
+

f2
τ

f2
0

−
πf2

τ
Kr

4. Approximate Φ1RA as ΦSS ΦSS = −πf2
τ /Kr − 4πR0f0/c ·

[

D(fη) + fτ

f0D(fη)
+

D2(fη)−1

2f2
0

D3(fη)
f2

τ

]

−
4πR0f0

c
·

∑n

i=3
Υi
i!

f i
τ

5. ejΦSS × ej·HHOP F HHOPF = π ·

∑n

i=3
Xif i

τ

6. Range IFFT → ejΦsSm ΦsSm =
−4πR0D(fη)f0

c
+ πKm (τ − τd)2 +

∑n

i=3

(

4πR0f0
c

Υi
i!

− πXi

)

Ki
m (τ − τd)i

7. ejΦsSm × ejHCS HCS = πq2

(

τ − τref

)2
+ π
∑n

i=3
qi

(

τ − τref

)i

8. Rearange Terms → ejΦsSz ΦsSz =
−4πR0D(fη)f0

c
+
∑n

i=0
Ci (τ − τs)

i

=
−4πR0D(fη)f0

c
+ π
(

q2 + Kf

)

(τ − τs)2 + π
∑n

i=3

(

qi − XiKi
f

+
4f0ΥiRref Ki

f

i!c

)

(τ − τs)
i

+πKm∆τ2 (α − 1)2 +
∑n

i=3

(

2πKi
mf0∆τiΥi(∆τc+2Rref )

i!c
− πKi

m∆τ iXi

)

+
∑n

i=2
παi∆τ iqi

9. Range FFT → ejΦSS2 ΦSS2 =
−4πR0D(fη)f0

c
−

(

4πRref (1−α)

cD(fη)
+ 4παR0

cD(fη)

)

fτ −
παf2

τ
Kf

− π
∑n

i=3

(

qi − XiK
i
f

+
4f0ΥiRref Ki

f

i!c

)

f i
τ

+πKm∆τ2 (α − 1)2 +
∑n

i=3

(

2πKi
mf0∆τiΥi(∆τc+2Rref )

i!c
− πKi

m∆τ iXi

)

+
∑n

i=2
παi∆τ iqi

10. ejΦSS2 × ejHR HR =
4πRref fτ (1−α)

cD(fη)
+

παf2
τ

Kf
+ π
∑n

i=3

(

qi − XiK
i
f

+
4f0ΥiRref Ki

f

i!c

)

f i
τ

11. Range IFFT → ejΦsSaz ΦsSaz =
−4πR0D(fη)f0

c

+πKm∆τ2 (α − 1)2 +
∑n

i=3

(

2πKi
mf0∆τiΥi(∆τc+2Rref )

i!c
− πKi

m∆τ iXi

)

+
∑n

i=2
παi∆τ iqi

12. ejΦsSaz × ejHaz Haz =
4πR0D(fη)f0

c

−πKm∆τ2 (α − 1)2 −

∑n

i=3

(

2πKi
mf0∆τiΥi(∆τc+2Rref )

i!c
− πKi

m∆τ iXi

)

−

∑n

i=2
παi∆τ iqi

13. Azimuth IFFT

the algorithm simplifies to the extended CSA of [15]. Also,
when n = 4 it simplifies to the QPA [16] with a note that
our algorithm includes a 4th order signal model. The extended
CSA, non-linear CSA and QPA were all specifically developed
for squint mode processing, but it is not only squinting that
can cause the low-order approximations to break down. The
approximation error has been dealt with more generally in this
paper, but the method developed is well suited for squint-mode
processing.

An approximation to the generalized algorithm that elimi-
nates the extra range FFT and IFFT is obtained by, in Table III,
eliminating rows 3-6 and combining row 5 with row 10. An
example is shown in Fig. 15, where it is plain to see that the
focusing is similar, but the sidelobes are larger.

V. CONCLUSION

With new SAR systems pushing center frequencies lower,
bandwidths larger, and beamwidths wider, the approximations
used in common frequency-domain SAR processing algo-
rithms are inadequate. By developing an expression for the
phase error term and visualizing it over the two-dimensional
frequency support band, analysis of the effects of varying
the SAR parameters for a given approximation is enhanced.

RDA and CSA are low-order approximations of ideal fre-
quency domain processing. A generalized algorithm is herein
developed. A set of guidelines is proposed to determine the
required approximation order for proper image processing, for
a given set of SAR parameters. An efficient frequency-domain
algorithm, built upon the CSA framework, which accounts
for higher order terms is used to increase the precision over
existing algorithms. Together, these tools provide an attractive
alternative to the ω-k and time-domain methods for processing
wide-beamwidth, low-frequency, large-bandwidth SAR data.

APPENDIX A
DERIVATION OF GENERAL SAR SIGNAL IN THE

WAVENUMBER DOMAIN

For completeness, a summary of the derivation of the
SAR signal in the wavenumber domain that is presented by
Cumming and Wong in [31] is included in this appendix. The
derivation consists of taking the range and azimuth Fourier
transforms of Eq. (1). We approximate the Fourier transforms
using the principle of stationary phase (POSP), which is valid
except in the extreme case of having radar frequencies very
close to zero.

An expression for the signal phase after the range Fourier
transform is computed by adding the phase term −2πfττ to
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TABLE IV
SOLVED HIGH-ORDER FILTER PARAMETERS AND CHIRP-SCALING TERMS

Parameter Solution

q2 Kf
1−α

α

q3 KsK2
f

1−α
3α

X3
−(α−2)Ksc+(α−1)2f0Υ3Rref Kf

3Kf c(α−1)

q4 K3
f

(α−1)(f0D(fη)cΥ3+6f0Rref KsKf Υ3−9KsKf cX3)+2K2
s c

−12cα

X4
(α−2)(f0D(fη)cΥ3+6f0Rref KsKf Υ3−9KsKf cX3)−(α−1)2f0Υ4Rref Kf +2K2

s c

−12Kf c(α−1)

q5 K4
f

(α−1)(f0Υ4D(fη)c+8f0Υ4Rref KsKf −48X4KsKf c)+6f0KsΥ3(4Rref Kf Ks+cD(fη))−36X3K2
s Kf c

−60cα

X5
(α−2)(f0D(fη)cΥ4+8f0Rref KsKf Υ4−48KsKf cX4)−(α−1)2Kf f0Υ5Rref +6f0KsΥ3(4Rref Kf Ks+cD(fη))−36K2

s Kf X3

−60Kf c(α−1)

q6 K5
f

8f0KsΥ4(5Rref KsKf +cD(fη))−(α−1)(−f0D(fη)cΥ5+300KsKf cX5−10f0Rref KsKf Υ5)−240K2
s Kf cX4

−360cα

X6
(α−2)(−300KsKf cX5+f0D(fη)cΥ5+10f0Rref KsKf Υ5)−(α−1)2f0Rref Kf Υ6+8f0Υ4Ks(5Rref KsKf +cD(fη))−240X4K2

s Kf c

−360Kf c(α−1)

Eq. (1), where fτ is range frequency:

Φ0r =
−4πf0R(η)

c
+ πKr

[

τ −

2R(η)

c

]2

− 2πfττ. (25)

Take the derivative of the phase with respect to τ , and solve
for τ at the point where the phase is stationary (i.e. where
dΦ0r/dτ = 0).

dΦ0r

dτ
= 2πKr

[

τ −

2R(η)

c

]

− 2πfτ = 0 (26)

τ =
fτ

Kr

+
2R(η)

c
. (27)

Substitute into Eq. (25) and simplify to obtain the signal phase
after the range Fourier transform of the signal.

Φ1R =
−4πf0R(η)

c
+

πf2
τ

Kr

− 2πfτ

(

2R(η)

c
+

fτ

Kr

)

=
−4πf0R(η)

c
−

πf2
τ

Kr

+
−4πfτR(η)

c

=
−4π(f0 + fτ )R(η)

c
−

πf2
τ

Kr

(28)

We now expand the range to the target R(η)

R(η) =
√

R2
0 + v2η2 (29)

where R0 is the range of closest approach, and v is the
velocity.

Φ1R =
−4π(f0 + fτ )

√

R2
0 + v2η2

c
−

πf2
τ

Kr

. (30)

In order to evaluate the phase signal after the azimuth
Fourier transform, again the POSP is used. Building the
azimuth Fourier transform adds the term −2πfηη to the signal
phase. Then the first derivative with respect to η is set to zero
and solved for η.

Φ1Ra =
−4π(f0 + fτ )

√

R2
0 + v2η2

c
−

πf2
τ

Kr

− 2πfηη (31)

dΦ1Ra

dη
=

−4πf0v
2η

c
√

R2
0 + v2η2

+
−4πfτv2η

c
√

R2
0 + v2η2

− 2πfη = 0 (32)

η = −

cfηR0

v
√

−f2
η c2 + 4v2f2

0 + 8v2f0fτ + 4v2f2
τ

= −

cfηR0

2(f0 + fτ )v2

√

1 −
c2f2

η

4v2(f0+fτ )2

(33)

Substitute this into Eq. (31) and simplify with some algebraic
manipulation to get the phase of the SAR signal in the
wavenumber domain.

Φ1RA = −

4π(f0 + fτ )

√

R2
0 +

v2c2R2
0f2

η

(f0+fτ )2v4

(

4−
f2

η c2

v2(f0+fτ )2

)

c

+
πcR0f

2
η

(f0 + fτ )v2

√

1 −
c2f2

η

4v2(f0+fτ )2

−

πf2
τ

Kr

= −

4πR0(f0 + fτ )

c
√

1 −

c2f2
η

4v2(f0+fτ )2

+
πcR0f

2
η

(f0 + fτ )v2

√

1 −
c2f2

η

4v2(f0+fτ )2

−

πf2
τ

Kr

= −

4πR0(f0 + fτ )

c

√

1 −

c2f2
η

4v2(f0 + fτ )2
−

πf2
τ

Kr

= −

4πR0f0

c

√

D2(fη) +
2fτ

f0
+

f2
τ

f2
0

−

πf2
τ

Kr

(34)

where

D(fη) =

√

1 −

c2f2
η

4v2f2
0

, (35)

and fη is azimuth frequency.
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