80 research outputs found
Dynamic Proteomics of Individual Cancer Cells in Response to a Drug
Why do seemingly identical cells respond differently to a drug? To address this, we studied the dynamics and variability of the protein response of human cancer cells to a chemotherapy drug, camptothecin. We present a dynamic-proteomics approach that measures the levels and locations of nearly 1000 different endogenously tagged proteins in individual living cells at high temporal resolution. All cells show rapid translocation of proteins specific to the drug mechanism, including the drug target (topoisomerase-1), and slower, wide-ranging temporal waves of protein degradation and accumulation. However, the cells differ in the behavior of a subset of proteins. We identify proteins whose dynamics differ widely between cells, in a way that corresponds to the outcomes—cell death or survival. This opens the way to understanding molecular responses to drugs in individual cells
Recommended from our members
Cooperation between the United States Department of Energy National Laboratories and Mayak Production Association for enhancements to material protection control and accounting systems
The Agreement Between the Department of Defense of the United States and The Ministry of the Russian Federation for Atomic Energy (MINATOM) Concerning Control, Accounting, and Physical Protection of Nuclear Material, as well as a subsequent amendment to that agreement and a joint statement signed by the Department of Energy (DOE) and MINATOM, resulted in the selection of the Mayak Production Association (MPA) as one of the Russian enterprises that would participate with DOE Laboratories in expanded cooperation aimed at enhancing Material protection, Control and Accounting (MPC&A) systems in both countries. This paper describes the nature and scope of the expanded cooperation involving MPA and six DOE laboratories at an operating civilian, spent-nuclear-fuel reprocessing plant designated RT-1. RT-1 produces, among other materials, reactor-grade plutonium dioxide, a direct-use material that is stored within the boundaries of this plant. Initial efforts at expanded cooperation will focus on enhancements to the existing MPC&A systems at MPA`s RT-1 plant
Frequency Domain Analysis Reveals External Periodic Fluctuations Can Generate Sustained p53 Oscillation
p53 is a well-known tumor suppressor protein that regulates many pathways, such as ones involved in cell cycle and apoptosis. The p53 levels are known to oscillate without damping after DNA damage, which has been a focus of many recent studies. A negative feedback loop involving p53 and MDM2 has been reported to be responsible for this oscillatory behavior, but questions remain as how the dynamics of this loop alter in order to initiate and maintain the sustained or undamped p53 oscillation. Our frequency domain analysis suggests that the sustained p53 oscillation is not completely dictated by the negative feedback loop; instead, it is likely to be also modulated by periodic DNA repair-related fluctuations that are triggered by DNA damage. According to our analysis, the p53-MDM2 feedback mechanism exhibits adaptability in different cellular contexts. It normally filters noise and fluctuations exerted on p53, but upon DNA damage, it stops performing the filtering function so that DNA repair-related oscillatory signals can modulate the p53 oscillation. Furthermore, it is shown that the p53-MDM2 feedback loop increases its damping ratio allowing p53 to oscillate at a frequency more synchronized with the other cellular efforts to repair the damaged DNA, while suppressing its inherent oscillation-generating capability. Our analysis suggests that the overexpression of MDM2, observed in many types of cancer, can disrupt the operation of this adaptive mechanism by making it less responsive to the modulating signals after DNA damage occurs
Sophisticated Framework between Cell Cycle Arrest and Apoptosis Induction Based on p53 Dynamics
The tumor suppressor, p53, regulates several gene expressions that are related to the DNA repair protein, cell cycle arrest and apoptosis induction, which activates the implementation of both cell cycle arrest and induction of apoptosis. However, it is not clear how p53 specifically regulates the implementation of these functions. By applying several well-known kinetic mathematical models, we constructed a novel model that described the influence that DNA damage has on the implementation of both the G2/M phase cell cycle arrest and the intrinsic apoptosis induction via its activation of the p53 synthesis process. The model, which consisted of 32 dependent variables and 115 kinetic parameters, was used to examine interference by DNA damage in the implementation of both G2/M phase cell cycle arrest and intrinsic apoptosis induction. A low DNA damage promoted slightly the synthesis of p53, which showed a sigmoidal behavior with time. In contrast, in the case of a high DNA damage, the p53 showed an oscillation behavior with time. Regardless of the DNA damage level, there were delays in the G2/M progression. The intrinsic apoptosis was only induced in situations where grave DNA damage produced an oscillation of p53. In addition, to wreck the equilibrium between Bcl-2 and Bax the induction of apoptosis required an extreme activation of p53 produced by the oscillation dynamics, and was only implemented after the release of the G2/M phase arrest. When the p53 oscillation is observed, there is possibility that the cell implements the apoptosis induction. Moreover, in contrast to the cell cycle arrest system, the apoptosis induction system is responsible for safeguarding the system that suppresses malignant transformations. The results of these experiments will be useful in the future for elucidating of the dominant factors that determine the cell fate such as normal cell cycles, cell cycle arrest and apoptosis
Modeling the Basal Dynamics of P53 System
The tumor suppressor p53 has become one of most investigated genes. Once activated by stress, p53 leads to cellular responses such as cell cycle arrest and apoptosis.Most previous models have ignored the basal dynamics of p53 under nonstressed conditions. To explore the basal dynamics of p53, we constructed a stochastic delay model by incorporating two negative feedback loops. We found that protein distribution of p53 under nonstressed condition is highly skewed with a fraction of cells showing high p53 levels comparable to those observed under stressed conditions. Under nonstressed conditions, asynchronous and spontaneous p53 pulses are triggered by basal DNA double strand breaks produced during normal cell cycle progression. The first peaking times show a predominant G1 distribution while the second ones are more widely distributed. The spontaneous pulses are triggered by an excitable mechanism. Once initiated, the amplitude and duration of pulses remain unchanged. Furthermore, the spontaneous pulses are filtered by ataxia telangiectasia mutated protein mediated posttranslational modifications and do not result in substantial p21 transcription. If challenged by externally severe DNA damage, cells generate synchronous p53 pulses and induce significantly high levels of p21. The high expression of p21 can also be partially induced by lowering the deacetylation rate.Our results demonstrated that the dynamics of p53 under nonstressed conditions is initiated by an excitable mechanism and cells become fully responsive only when cells are confronted with severe damage. These findings advance our understanding of the mechanism of p53 pulses and unlock many opportunities to p53-based therapy
Noise Amplification in Human Tumor Suppression following Gamma Irradiation
The influence of noise on oscillatory motion is a subject of permanent interest, both for fundamental and practical reasons. Cells respond properly to external stimuli by using noisy systems. We have clarified the effect of intrinsic noise on the dynamics in the human cancer cells following gamma irradiation. It is shown that the large amplification and increasing mutual information with delay are due to coherence resonance. Furthermore, frequency domain analysis is used to study the mechanisms
Oscillatory stimuli differentiate adapting circuit topologies
This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this record.Biology emerges from interactions between molecules, which are challenging to elucidate with current techniques. An orthogonal approach is to probe for 'response signatures' that identify specific circuit motifs. For example, bistability, hysteresis, or irreversibility are used to detect positive feedback loops. For adapting systems, such signatures are not known. Only two circuit motifs generate adaptation: negative feedback loops (NFLs) and incoherent feed-forward loops (IFFLs). On the basis of computational testing and mathematical proofs, we propose differential signatures: in response to oscillatory stimulation, NFLs but not IFFLs show refractory-period stabilization (robustness to changes in stimulus duration) or period skipping. Applying this approach to yeast, we identified the circuit dominating cell cycle timing. In Caenorhabditis elegans AWA neurons, which are crucial for chemotaxis, we uncovered a Ca2+ NFL leading to adaptation that would be difficult to find by other means. These response signatures allow direct access to the outlines of the wiring diagrams of adapting systems.The work was supported by US National Institutes of Health grant 5RO1-GM078153-07 (F.R.C.), NRSA Training Grant CA009673-36A1 (S.J.R.), a Merck Postdoctoral Fellowship at The Rockefeller University (S.J.R.), and the Simons Foundation (S.J.R.). J.L. was supported by a fellowship from the Boehringer Ingelheim Fonds. E.D.S. was partially supported by the US Office of Naval Research (ONR N00014-13-1-0074) and the US Air Force Office of Scientific Research (AFOSR FA9550-14-1-0060)
Differential Gene Expression Regulated by Oscillatory Transcription Factors
Cells respond to changes in the internal and external environment by a complex regulatory system whose end-point is the activation of transcription factors controlling the expression of a pool of ad-hoc genes. Recent experiments have shown that certain stimuli may trigger oscillations in the concentration of transcription factors such as NF-B and p53 influencing the final outcome of the genetic response. In this study we investigate the role of oscillations in the case of three different well known gene regulatory mechanisms using mathematical models based on ordinary differential equations and numerical simulations. We considered the cases of direct regulation, two-step regulation and feed-forward loops, and characterized their response to oscillatory input signals both analytically and numerically. We show that in the case of indirect two-step regulation the expression of genes can be turned on or off in a frequency dependent manner, and that feed-forward loops are also able to selectively respond to the temporal profile of oscillating transcription factors
Explaining oscillations and variability in the p53-Mdm2 system
<p>Abstract</p> <p>Background</p> <p>In individual living cells p53 has been found to be expressed in a series of discrete pulses after DNA damage. Its negative regulator Mdm2 also demonstrates oscillatory behaviour. Attempts have been made recently to explain this behaviour by mathematical models but these have not addressed explicit molecular mechanisms. We describe two stochastic mechanistic models of the p53/Mdm2 circuit and show that sustained oscillations result directly from the key biological features, without assuming complicated mathematical functions or requiring more than one feedback loop. Each model examines a different mechanism for providing a negative feedback loop which results in p53 activation after DNA damage. The first model (ARF model) looks at the mechanism of p14<sup>ARF </sup>which sequesters Mdm2 and leads to stabilisation of p53. The second model (ATM model) examines the mechanism of ATM activation which leads to phosphorylation of both p53 and Mdm2 and increased degradation of Mdm2, which again results in p53 stabilisation. The models can readily be modified as further information becomes available, and linked to other models of cellular ageing.</p> <p>Results</p> <p>The ARF model is robust to changes in its parameters and predicts undamped oscillations after DNA damage so long as the signal persists. It also predicts that if there is a gradual accumulation of DNA damage, such as may occur in ageing, oscillations break out once a threshold level of damage is acquired. The ATM model requires an additional step for p53 synthesis for sustained oscillations to develop. The ATM model shows much more variability in the oscillatory behaviour and this variability is observed over a wide range of parameter values. This may account for the large variability seen in the experimental data which so far has examined ARF negative cells.</p> <p>Conclusion</p> <p>The models predict more regular oscillations if ARF is present and suggest the need for further experiments in ARF positive cells to test these predictions. Our work illustrates the importance of systems biology approaches to understanding the complex role of p53 in both ageing and cancer.</p
A Theoretical Exploration of Birhythmicity in the p53-Mdm2 Network
Experimental observations performed in the p53-Mdm2 network, one of the key protein modules involved in the control of proliferation of abnormal cells in mammals, revealed the existence of two frequencies of oscillations of p53 and Mdm2 in irradiated cells depending on the irradiation dose. These observations raised the question of the existence of birhythmicity, i.e. the coexistence of two oscillatory regimes for the same external conditions, in the p53-Mdm2 network which would be at the origin of these two distinct frequencies. A theoretical answer has been recently suggested by Ouattara, Abou-Jaoudé and Kaufman who proposed a 3-dimensional differential model showing birhythmicity to reproduce the two frequencies experimentally observed. The aim of this work is to analyze the mechanisms at the origin of the birhythmic behavior through a theoretical analysis of this differential model. To do so, we reduced this model, in a first step, into a 3-dimensional piecewise linear differential model where the Hill functions have been approximated by step functions, and, in a second step, into a 2-dimensional piecewise linear differential model by setting one autonomous variable as a constant in each domain of the phase space. We find that two features related to the phase space structure of the system are at the origin of the birhythmic behavior: the existence of two embedded cycles in the transition graph of the reduced models; the presence of a bypass in the orbit of the large amplitude oscillatory regime of low frequency. Based on this analysis, an experimental strategy is proposed to test the existence of birhythmicity in the p53-Mdm2 network. From a methodological point of view, this approach greatly facilitates the computational analysis of complex oscillatory behavior and could represent a valuable tool to explore mathematical models of biological rhythms showing sufficiently steep nonlinearities
- …