48 research outputs found

    iCLIP - Transcriptome-wide Mapping of Protein-RNA Interactions with Individual Nucleotide Resolution

    Get PDF
    The unique composition and spatial arrangement of RNA-binding proteins (RBPs) on a transcript guide the diverse aspects of post-transcriptional regulation1. Therefore, an essential step towards understanding transcript regulation at the molecular level is to gain positional information on the binding sites of RBPs2

    Control of a neuronal morphology program by an RNA-binding zinc finger protein, Unkempt

    Get PDF
    Cellular morphology is an essential determinant of cellular function in all kingdoms of life, yet little is known about how cell shape is controlled. Here we describe a molecular program that controls the early morphology of neurons through a metazoan-specific zinc finger protein, Unkempt. Depletion of Unkempt in mouse embryos disrupts the shape of migrating neurons, while ectopic expression confers neuronal-like morphology to cells of different nonneuronal lineages. We found that Unkempt is a sequence-specific RNA-binding protein and identified its precise binding sites within coding regions of mRNAs linked to protein metabolism and trafficking. RNA binding is required for Unkempt-induced remodeling of cellular shape and is directly coupled to a reduced production of the encoded proteins. These findings link post-transcriptional regulation of gene expression with cellular shape and have general implications for the development and disease of multicellular organisms

    Insights into the design and interpretation of iCLIP experiments

    Get PDF
    Abstract Background Ultraviolet (UV) crosslinking and immunoprecipitation (CLIP) identifies the sites on RNAs that are in direct contact with RNA-binding proteins (RBPs). Several variants of CLIP exist, which require different computational approaches for analysis. This variety of approaches can create challenges for a novice user and can hamper insights from multi-study comparisons. Here, we produce data with multiple variants of CLIP and evaluate the data with various computational methods to better understand their suitability. Results We perform experiments for PTBP1 and eIF4A3 using individual-nucleotide resolution CLIP (iCLIP), employing either UV-C or photoactivatable 4-thiouridine (4SU) combined with UV-A crosslinking and compare the results with published data. As previously noted, the positions of complementary DNA (cDNA)-starts depend on cDNA length in several iCLIP experiments and we now find that this is caused by constrained cDNA-ends, which can result from the sequence and structure constraints of RNA fragmentation. These constraints are overcome when fragmentation by RNase I is efficient and when a broad cDNA size range is obtained. Our study also shows that if RNase does not efficiently cut within the binding sites, the original CLIP method is less capable of identifying the longer binding sites of RBPs. In contrast, we show that a broad size range of cDNAs in iCLIP allows the cDNA-starts to efficiently delineate the complete RNA-binding sites. Conclusions We demonstrate the advantage of iCLIP and related methods that can amplify cDNAs that truncate at crosslink sites and we show that computational analyses based on cDNAs-starts are appropriate for such methods

    Lieblingsbild

    No full text
    Dieses Bild ist wichtig, weil wir daran verstanden haben, wie in der Zelle fehlerhaftes Spleißen verhindert wird. Dazu muss man wissen, dass unsere Gene sich aus Exons und dazwischenliegenden Introns zusammensetzen. Während des Spleißens werden die Introns entfernt und die Exons in ein reifes Transkript zusammengefügt, das dann für ein Protein kodiert. Allerdings gibt es innerhalb der Introns viele Bereiche, die einem Exon sehr ähnlich sehen. Werden diese sogenannten "PseudoExons" fälschlicherweise während des Spleißprozesses erkannt und in das reife Transkript eingebaut, kann das fatale Folgen für das kodierte Protein und oft die gesamte Zelle haben. ..

    High-Throughput Screens for cis

    No full text

    iCLIP data analysis: A complete pipeline from sequencing reads to RBP binding sites

    No full text
    Precise knowledge on the binding sites of an RNA-binding protein (RBP) is key to understanding the complex post-transcriptional regulation of gene expression. This information can be obtained from individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) experiments. Here, we present a complete data analysis workflow to reliably detect RBP binding sites from iCLIP data. The workflow covers all steps from the initial quality control of the sequencing reads up to peak calling and quantification of RBP binding. For each tool, we explain the specific requirements for iCLIP data analysis and suggest optimised parameter settings
    corecore