1,927 research outputs found
Molecular simulation study of the heat capacity of metastable water between 100K and 300K
Molecular simulation study of the heat capacity of metastable water between
100K and 300K Molecular simulations have been used to study the heat capacity
of metastable liquid water at low temperature adsorbed on a smooth surface.
These calculations aim at modelling water properties measured by experiments
performed on water films adsorbed on Vycor nanoporous silica at low
temperature. In particular, the study focuses on the non-monotonous variation
of the heat capacity around between 100 and 300 K
Accessing High Momentum States In Lattice QCD
Two measures are defined to evaluate the coupling strength of smeared
interpolating operators to hadronic states at a variety of momenta. Of
particular interest is the extent to which strong overlap can be obtained with
individual high-momentum states. This is vital to exploring hadronic structure
at high momentum transfers on the lattice and addressing interesting phenomena
observed experimentally. We consider a novel idea of altering the shape of the
smeared operator to match the Lorentz contraction of the probability
distribution of the high-momentum state, and show a reduction in the relative
error of the two-point function by employing this technique. Our most important
finding is that the overlap of the states becomes very sharp in the smearing
parameters at high momenta and fine tuning is required to ensure strong overlap
with these states.Comment: 10 page
Scaling of FLIC Fermions
Hadron masses are calculated in quenched lattice QCD on a variety of lattices
in order to probe the scaling behavior of the Fat-Link Irrelevant Clover (FLIC)
fermion action, a fat-link clover fermion action in which the purely irrelevant
operators of the fermion action are constructed using APE-smeared links. The
scaling analysis indicates FLIC fermions provide a new form of nonperturbative
O(a) improvement where near-continuum results are obtained at finite lattice
spacing.Comment: 4 pages, 1 figure, 2 tables. Figure updated and references added.
Accepted for publication in Phys. Rev.
New results from the lattice on the theoretical inputs to the hadronic tau determination of V_us
Recent sum rule determinations of |V_us|, employing flavor-breaking
combinations of hadronic tau decay data, are significantly lower than either
expectations based on 3-family unitarity or determinations from K_ell3 and
Gamma[K_mu2]/Gamma[pi_mu2]. We use lattice data to investigate the
accuracy/reliability of the OPE representation of the flavor-breaking
correlator combination entering the tau decay analyses. The behavior of an
alternate correlator combination, constructed to reduce problems associated
with the slow convergence of the D = 2 OPE series, and entering an alternate
sum rule requiring both electroproduction cross-section and hadronic tau decay
data, is also investigated. Preliminary updates of both analyses, with the
lessons learned from the lattice data in mind, are also presented.Comment: 8 pages, 5 figures. Prepared for the proceedings of the 12th
International Workshop on Tau Lepton Physics, Sep. 17-21, 2012, Nagoya, Japan
and the 10th International Conference on Confinement and the Hadron Spectrum,
Oct. 6-13, 2012, Garching/Munich, German
Renormalization of local quark-bilinear operators for Nf=3 flavors of SLiNC fermions
The renormalization factors of local quark-bilinear operators are computed
non-perturbatively for flavors of SLiNC fermions, with emphasis on the
various procedures for the chiral and continuum extrapolations. The simulations
are performed at a lattice spacing fm, and for five values of the
pion mass in the range of 290-465 MeV, allowing a safe and stable chiral
extrapolation. Emphasis is given in the subtraction of the well-known pion pole
which affects the renormalization factor of the pseudoscalar current. We also
compute the inverse propagator and the Green's functions of the local bilinears
to one loop in perturbation theory. We investigate lattice artifacts by
computing them perturbatively to second order as well as to all orders in the
lattice spacing. The renormalization conditions are defined in the RI-MOM
scheme, for both the perturbative and non-perturbative results. The
renormalization factors, obtained at different values of the renormalization
scale, are translated to the scheme and are evolved
perturbatively to 2 GeV. Any residual dependence on the initial renormalization
scale is eliminated by an extrapolation to the continuum limit. We also study
the various sources of systematic errors.
Particular care is taken in correcting the non-perturbative estimates by
subtracting lattice artifacts computed to one loop perturbation theory using
the same action. We test two different methods, by subtracting either the
contributions, or the complete (all orders in )
one-loop lattice artifacts.Comment: 33 pages, 27 figures, 6 table
Meson decay constants from Nf=2 clover fermions
We present recent results for meson decay constants calculated on
configurations with two flavours of O(a)-improved Wilson fermions.
Non-perturbative renormalisation is applied and quark mass dependencies as well
as finite volume and discretisation effects are investigated. In this work we
also present a computation of the coupling of the light vector mesons to the
tensor current using dynamical fermions.Comment: 6 pages, contribution to Lattice2005(Hadron spectrum and quark
masses
Improving the lattice axial vector current
For Wilson and clover fermions traditional formulations of the axial vector
current do not respect the continuum Ward identity which relates the divergence
of that current to the pseudoscalar density. Here we propose to use a
point-split or one-link axial vector current whose divergence exactly satisfies
a lattice Ward identity, involving the pseudoscalar density and a number of
irrelevant operators. We check in one-loop lattice perturbation theory with
SLiNC fermion and gauge plaquette action that this is indeed the case including
order effects. Including these operators the axial Ward identity remains
renormalisation invariant. First preliminary results of a nonperturbative check
of the Ward identity are also presented.Comment: 7 pages, 3 figures, Proceedings of the 33rd International Symposium
on Lattice Field Theory, 14-18 July 2015, Kobe, Japa
Structure and dynamics of the fullerene polymer Li4 C60 studied with neutron scattering
The two-dimensional polymer structure and lattice dynamics of the superionic
conductor Li4 C60 are investigated by neutron diffraction and spectroscopy. The
peculiar bonding architecture of this compound is definitely confirmed through
the precise localisation of the carbon atoms involved in the intermolecular
bonds. The spectral features of this phase are revealed through ab-initio
lattice dynamics calculations and inelastic neutron scattering experiments. The
neutron observables are found to be in very good agreement with the simulations
which predict a partial charge transfer from the Li atoms to the C60 cage. The
absence of a well defined band associated to one category of the Li atoms in
the experimental spectrum suggests that this species is not ordered even at the
lowest temperatures. The calculations predict an unstable Li sublattice at a
temperature of 200 K, that we relate to the large ionic diffusivity of this
system. This specificity is discussed in terms of coupling between the low
frequency optic modes of the Li ions to the soft structure of the polymer.Comment: 29 pages, 13 Figure
A novel mutation in isoform 3 of the plasma membrane Ca2+ pump impairs cellular Ca2+ homeostasis in a patient with cerebellar ataxia and laminin subunit 1\u3b1 mutations.
The particular importance of Ca2+ signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca2+ ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca2+. A genetic defect of the function of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation of the PMCA3 pump (ATP2B3) in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca2+ ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca2+ transients generated by cell stimulation and impairs its Ca2+ extrusion function under conditions of low resting cytosolic Ca2+ as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca2+-bound state. The patient also carries two missense mutations in LAMA1, encoding for laminin subunit 1\u3b1. On the basis of the family pedigree of the patient, the presence of both PMCA3 and LAMA1 mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca2+ homeostasis and the previous finding that PMCAs act as digenic modulators in Ca2+-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype
- …
