Quark propagator in a covariant gauge

F.D.R. Bonnet, D.B. Leinweber, A.G. Williams, J.M. Zanotti, and J.B. Zhang.
Dept. of Physics and Mathematical Physics and CSSM, University of Adelaide, Adelaide 5005.

Using mean-field improved gauge field configurations, we compare the results obtained for the quark propagator from Wilson fermions and Overlap fermions on a $12^{3} \times 24$ lattice at a spacing of $a=0.125(2) \mathrm{fm}$.

1. INTRODUCTION

In QCD, asymptotic freedom states that at short distances the effective coupling constant vanishes. In that regime the interaction between quarks and gluons is largely reduced. The dynamics of these particles can be studied through their propagators in momentum space. The quark propagator is really a description of how the quark propagates in the QCD vacuum and is one of the most fundamental building blocks of QCD. By studying the momentum dependent quark mass function in the infrared region, the scalar part of the propagator, we can gain some insights into the mechanism of chiral symmetry breaking. Chiral symmetry is dynamically broken in the QCD vacuum. This gives rise to mass generation in the infrared.

In the deep infrared region, artifacts associated with the finite size of the lattice spacing become small. This is the most interesting region as nonperturbative physics lies here. However, the ultraviolet behaviour of the propagator at large momenta will in general strongly deviate from the correct continuum behaviour. This behaviour will be action dependent.

In this brief report we compare the quark propagators of Wilson and overlap fermions. Additional details may be found in Ref. [1].

1.1. The Quark Propagator

In the continuum, it is possible to study dynamical chiral symmetry breaking (DCSB) using the renormalized quark Dyson-Schwinger equation (quark-DSE) in Euclidean space. In this equation, information about the renormalized
dressed gluon propagator and dressed quarkgluon vertex is embodied. The quark propagator has the general form

$$
\begin{align*}
S(p) & =\frac{1}{i \gamma \cdot p A\left(p^{2} ; \zeta^{2}\right)+B\left(p^{2} ; \zeta^{2}\right)} \\
& =\frac{Z\left(p^{2} ; \zeta^{2}\right)}{i \gamma \cdot p+M\left(p^{2} ; \zeta^{2}\right)} \tag{1}
\end{align*}
$$

where $M=B / A$ and $Z=1 / A$. Here, the parameter ζ represents the renormalization point. The functions $A\left(p^{2} ; \zeta^{2}\right)$ and $B\left(p^{2} ; \zeta^{2}\right)$ carry all the effects of vector and scalar quark dressing induced by the quark interactions with the gluon field.

Through this simple form we can extract the quark mass function $M(p)$ and renormalization function, $Z(p)$.

2. QUARK PROPAGATOR ON THE LATTICE

On the lattice we expect the bare quark propagators, in momentum space, to have a similar form as in the continuum [2] [4]. Hence, the dimensionless inverse lattice bare quark propagator takes the general form of

$$
\begin{align*}
S^{-1}(p) & \equiv i\left(\sum_{\mu} C_{\mu}(p) \gamma_{\mu}\right)+B(p) \\
& \equiv \frac{i\left(\sum_{\mu} \mathcal{C}_{\mu}(p) \gamma_{\mu}\right)+\mathcal{B}(p)}{\mathcal{C}^{2}(p)+\mathcal{B}^{2}(p)} \tag{2}
\end{align*}
$$

with $\mathcal{C}^{2}(p)=\sum_{\mu}\left(\mathcal{C}_{\mu}(p)\right)^{2}$. The discrete momentum values for a t-antiperiodic lattice of size $N_{i}^{3} \times N_{t}$, with $n_{i}=1, . ., N_{i}$ and $n_{t}=1, . ., N_{t}$,
are given by $p_{i}=\frac{2 \pi}{N_{i} a}\left(n_{i}-\frac{N_{i}}{2}\right)$ and $p_{t}=$ $\frac{2 \pi}{N_{t} a}\left(n_{t}-\frac{1}{2}-\frac{N_{t}}{2}\right)$. The quark propagator is
$S(p) \equiv-i\left(\sum_{\mu} \mathcal{C}_{\mu}(p) \gamma_{\mu}\right)+\mathcal{B}(p)$.
Taking the trace we obtain
$\mathcal{C}_{\mu}(p)=\frac{i}{4 N_{c}} \operatorname{Tr}\left[\gamma_{\mu} S(p)\right]$, and
$\mathcal{B}(p)=\frac{1}{4 N_{c}} \operatorname{Tr}[S(p)]$,
which we use to construct the $C_{\mu}(p)$ and $B(p)$
$C_{\mu}(p)=\frac{\mathcal{C}_{\mu}(p)}{\mathcal{D}(p)}, \quad$ and $\quad B(p)=\frac{\mathcal{B}(p)}{\mathcal{D}(p)}$,
where $\mathcal{D}(p)=\mathcal{C}^{2}(p)+\mathcal{B}^{2}(p)$. At tree-level the lattice quark propagator takes the same form as in Eq. (11) and we know that the free propagator $\left(S^{(0)}(p)\right)^{-1} \equiv\left(Z^{(0)}(p)\right)^{-1}\left[i \not k+M^{(0)}(p)\right]$, where $k_{\mu} \longrightarrow p_{\mu}$ as $p_{\mu} \longrightarrow 0$. It is then possible to extract the momentum directly from the lattice by calculating
$q_{\mu} \equiv C_{\mu}^{(0)}(p)=\frac{\mathcal{C}_{\mu}^{(0)}(p)}{\left(\mathcal{C}^{(0)}(p)\right)^{2}+\left(\mathcal{B}^{(0)}(p)\right)^{2}}$.
Results are displayed in Fig. 1.

2.1. Mass and Renormalization Functions

The dimensionless inverse lattice bare quark propagator takes the form

$$
\begin{align*}
S^{-1}(p) & \equiv \operatorname{iaq} A(p)+B(p) \\
& =\left[Z^{\mathrm{L}}(p)\right]^{-1}\left(i a \phi+M^{\mathrm{L}}(p)\right) \tag{7}
\end{align*}
$$

where $M^{\mathrm{L}}(p)=B(p) / A(p)$ is the lattice quark mass function and $Z^{\mathrm{L}}(p)=1 / A(p)$ the lattice renormalization function. The functions $A(p)$ and $B(p)$ may be written as:
$A(p)=\frac{\mathcal{A}(p)}{\mathcal{D}(p)}, \quad$ and $\quad B(p)=\frac{\mathcal{B}(p)}{\mathcal{D}(p)}$,
where $\mathcal{D}(p)=\mathcal{A}^{2}(p) q^{2}+\mathcal{B}^{2}(p)$. Hence an equivalent definition for the quark propagator is $S(p) \equiv$ - iaq $\mathcal{A}(p)+\mathcal{B}(p)$. Extracting the functions $\mathcal{A}(p)$ and $\mathcal{B}(p)$ is done via:

$$
\begin{align*}
\mathcal{A}(p) & =\frac{i}{4 N_{c} a q^{2}} \operatorname{Tr}[\not q S(p)], \quad \text { and } \\
\mathcal{B}(p) & =\frac{1}{4 N_{c}} \operatorname{Tr}[S(p)] \tag{9}
\end{align*}
$$

Figure 1. The lattice momentum q versus the discrete momentum p, both in GeV. Overlap (\square) and Wilson fermion (o) momenta are indicated.

Figure 2. The uncorrected mass function $M\left(q^{2}\right)$ for Wilson fermions.

In Fig. 2 we show the uncorrected mass function for Wilson fermions, where we can see a large divergence in the ultraviolet region.

2.2. Tree-Level Correction

The tree-level multiplicative correction is given by
$A^{(c)}(p)=\frac{A(p)}{A^{(0)}(p)} 1, B^{(c)}(p)=\frac{B(p)}{B^{(0)}(p)} m_{q}$,
where $A^{(0)}(p)$ and $B^{(0)}(p)$ are obtained from $S^{(0)}(p)$. Then tree-level corrected mass and renormalization functions are constructed using Eq. 10
$M^{(c)}\left(q^{2}\right)=\left(\frac{B^{(c)}(p)}{A^{(c)}(p)}\right), Z^{(c)}\left(q^{2}\right)=\frac{1}{A^{(c)}(p)}$.

3. FERMIONS ON THE LATTICE

3.1. Wilson Fermions

The Wilson fermion (5] action on the lattice is defined as,
$S_{W}[U, \bar{\psi}, \psi]=\sum_{x y} \bar{\psi}(x) D_{W}(x, y) \psi(y)$,
with $D_{W}(x, y)$ the usual Wilson fermion operator. The lattice bare mass is related to the hopping parameter via $\kappa=1 /\left(2 m_{q} a+8 r\right)$ and $m_{q} \equiv(1 / 2 a)\left(1 / \kappa-1 / \kappa_{c}\right)$.

3.2. Overlap Fermions

The overlap fermion [6] realizes exact chiral symmetry on the lattice
$D(\mu)=\frac{1}{2}\left[1+\mu+(1-\mu) \frac{D_{W}}{\sqrt{D_{W}^{\dagger} D_{W}}}\right]$
with $0 \leq \mu \leq 1$ describing fermions with a positive mass from 0 to ∞. The hopping parameter is given by $\kappa=1 /(-2 m+8 r)$ and $m \equiv$ $\left(1 / 2 \kappa_{c}-1 / 2 \kappa\right)$. To describe a single massless Dirac fermion for $D(0)$ we must have $0 \leq m \leq 2$ at tree-level. The overlap propagator is given by
$\tilde{D}^{-1}(\mu)=(1-\mu)^{-1}\left[D^{-1}(\mu)-1\right]$,
and is related to the continuum propagator by $D_{c}^{-1}\left(m_{q}\right)=\mathcal{Z}_{\psi} \tilde{D}^{-1}(\mu)$, and similarly for the quark mass $m_{q}=\mathcal{Z}_{m}^{-1} \mu$.

At tree-level [$\left[7\right.$ it is found that $\mathcal{Z}_{\psi}^{(0)}=\mathcal{Z}_{m}^{-1}=$ $2 m$, and the free propagator becomes

$$
\left[D_{c}^{(0)}\left(m_{q}\right)\right]^{-1}=\left[\mathcal{Z}_{\psi}^{(0)} \tilde{D}^{(0)}(\mu)\right]^{-1}
$$

and when the interactions are turned on we have

$$
\left[D_{c}\left(m_{q}\right)\right]^{-1}=\left[\mathcal{Z}_{\psi} \tilde{D}(\mu)\right]^{-1}
$$

where $\mathcal{Z}_{\psi}=\mathcal{Z}_{m}^{-1}$.

Figure 3. The mass function $M\left(q^{2}\right)$ for overlap fermions (full data) for the ten different masses.

4. NUMERICAL RESULTS

Using fifty improved gauge field configurations, on a $12^{3} \times 24$ lattice with $a=0.125(1)$ fm , the overlap quark propagator is calculated for ten different masses, $m_{q}=\mathcal{Z}_{\psi} \mu=$ $\{126,147,168,210,252,315,420,524,629,734\}$ MeV . Results are illustrated in Figs. 3 and 4.

For Wilson fermions, using a hundred configurations, five masses are considered, namely $m_{q}=\{221,181.5,138.3,99.91,62.04\} \mathrm{MeV}$. Results are displayed in Figs. 5 and 6.

A linear extrapolation is used to compare the two actions. In Fig. 7 we show the linearly extrapolated quark mass function for both actions plotted versus the discrete momentum p. When plotting M and Z versus the lattice momentum, q, the points are pushed away from the origin in the case of overlap fermions as opposed to Wilson fermions where the points are pulled towards the origin. The overlap action (plotted as \square) produces in the deep infrared $M(0)=297(11) \mathrm{MeV}$. Comparing with the Wilson fermion action (\times) we see a clear superiority of the overlap action over the Wilson action. Wilson fermions show a significant dip between 0.8 GeV and 2.0 GeV .

The linearly extrapolated renormalization function is shown in Fig. 8. In the deep infrared

Figure 4. The renormalization function for overlap fermions (full data) for the ten different masses. The function is renormalized at $\zeta=8.2$ GeV .
for the overlap action we have $Z(0)=0.48(2)$ with the renormalization point located at $\zeta=3.9$ GeV .

5. SUMMARY

Tree-level correction represents a crucial step and a powerful tool for correcting the Wilson action results. The division method produces a smooth quark mass function throughout the momentum spectrum. We are able to gain some insights into the analytic structure of the overlap quark propagator: $B^{(0)}(p)=\mathcal{Z}_{\psi}^{(0)} \mu$ and $A^{(0)}(p)=1$. The overlap produces very good results for $M(p)$ and $Z(p)$. No tree-level correction is required for overlap fermions.

REFERENCES

1. F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber, A. G. Williams \& J. B. Zhang, Submitted to Phys. Rev. D, hep-lat/0202003.
2. J-I. Skullerud \& A. G. Williams, Phys. Rev. D63 (2001) 054508.
3. J-I. Skullerud, D. B. Leinweber \& A. G. Williams, Phys. Rev. D64 (2001) 074508.

Figure 5. The tree-level corrected mass function $M^{(c)}\left(q^{2}\right)$ for Wilson fermions (half cut data).
4. R. Alkofer \& L- von Smekal, Phys. Rep. 353 (2001) 281.
5. K. G. Wilson, in New Phenomena in Subnuclear Physics, Part A, A. Z ichichi (ed.), Plenum Press, NY, (1975) 69.
6. H. Neuberger et al., Nucl. Phys. B443, 305 (1995).
7. R. Edwards, et al., Phys. Rev. D 59, 094510 (1999).

Figure 6. The tree-level corrected renormalization function for Wilson fermions (half cut data).

Figure 7. Comparison of the linearly extrapolated mass function M for both Wilson fermions (\times) and overlap fermions (\square), (cylinder cut data).

Figure 8. Comparison of the linearly extrapolated renormalization function for Wilson fermions (\times) and overlap fermions (\square), (cylinder cut data).

Elsevier instructions for the preparation of a 2-column format camera-ready paper in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$

P. de Groot ${ }^{\text {a* }}$, R. de Maas ${ }^{\text {a }}$, X.-Y. Wang ${ }^{\text {b }}$ and A. Sheffield ${ }^{\text {a }}{ }^{\ddagger}$
${ }^{\text {a }}$ Mathematics and Computer Science Section, Elsevier Science B.V., P.O. Box 103, 1000 AC Amsterdam, The Netherlands
${ }^{\mathrm{b}}$ Economics Department, University of Winchester, 2 Finch Road, Winchester, Hampshire P3L T19, United Kingdom

These pages provide you with an example of the layout and style for 100% reproduction which we wish you to adopt during the preparation of your paper. This is the output from the $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ document class you requested.

1. FORMAT

Text should be produced within the dimensions shown on these pages: each column 7.5 cm wide with 1 cm middle margin, total width of 16 cm and a maximum length of 19.5 cm on first pages and 21 cm on second and following pages. The ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ document class uses the maximum stipulated length apart from the following two exceptions (i) $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ does not begin a new section directly at the bottom of a page, but transfers the heading to the top of the next page; (ii) $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ never (well, hardly ever) exceeds the length of the text area in order to complete a section of text or a paragraph. Here are some references: [1, 2].

1.1. Spacing

We normally recommend the use of 1.0 (single) line spacing. However, when typing complicated mathematical text $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ automatically increases the space between text lines in order to prevent sub- and superscript fonts overlapping

[^0]one another and making your printed matter illegible.

1.2. Fonts

These instructions have been produced using a 10 point Computer Modern Roman. Other recommended fonts are 10 point Times Roman, New Century Schoolbook, Bookman Light and Palatino.

2. PRINTOUT

The most suitable printer is a laser or an inkjet printer. A dot matrix printer should only be used if it possesses an 18 or 24 pin printhead ("letterquality").

The printout submitted should be an original; a photocopy is not acceptable. Please make use of good quality plain white A4 (or US Letter) paper size. The dimensions shown here should be strictly adhered to: do not make changes to these dimensions, which are determined by the document class. The document class leaves at least 3 cm at the top of the page before the head, which contains the page number.

Printers sometimes produce text which contains light and dark streaks, or has considerable lighting variation either between left-hand and right-hand margins or between text heads and bottoms. To achieve optimal reproduction quality, the contrast of text lettering must be uniform,
sharp and dark over the whole page and throughout the article.

If corrections are made to the text, print completely new replacement pages. The contrast on these pages should be consistent with the rest of the paper as should text dimensions and font sizes.

3. TABLES AND ILLUSTRATIONS

Tables should be made with $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$; illustrations should be originals or sharp prints. They should be arranged throughout the text and preferably be included on the same page as they are first discussed. They should have a selfcontained caption and be positioned in flushleft alignment with the text margin within the column. If they do not fit into one column they may be placed across both columns (using \begin\{table*\} or \begin\{figure*\} so that } they appear at the top of a page).

3.1. Tables

Tables should be presented in the form shown in Table 11. Their layout should be consistent throughout.

Horizontal lines should be placed above and below table headings, above the subheadings and at the end of the table above any notes. Vertical lines should be avoided.

If a table is too long to fit onto one page, the table number and headings should be repeated above the continuation of the table. For this you have to reset the table counter with \addtocounter\{table\}\{-1\}. Alternatively, the table can be turned by 90° ('landscape mode') and spread over two consecutive pages (first an even-numbered, then an odd-numbered one) created by means of \begin\{table\} [h] without } a caption. To do this, you prepare the table as a separate $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ document and attach the tables to the empty pages with a few spots of suitable glue.

3.2. Useful table packages

Modern $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ comes with several packages for tables that provide additional functionality. Below we mention a few. See the documentation of the individual packages for more details. The

Table 1
The next-to-leading order (NLO) results without the pion field.

$\Lambda(\mathrm{MeV})$	140	150	175	200
$r_{d}(\mathrm{fm})$	1.973	1.972	1.974	1.978
$Q_{d}\left(\mathrm{fm}^{2}\right)$	0.259	0.268	0.287	0.302
$P_{D}(\%)$	2.32	2.83	4.34	6.14
μ_{d}	0.867	0.864	0.855	0.845
$\mathcal{M}_{\mathrm{M} 1}(\mathrm{fm})$	3.995	3.989	3.973	3.955
$\mathcal{M}_{\mathrm{GT}}(\mathrm{fm})$	4.887	4.881	4.864	4.846
$\delta_{1 \mathrm{~B}}^{\mathrm{VP}}(\%)$	-0.45	-0.45	-0.45	-0.45
$\delta_{1 \mathrm{~B}}^{\mathrm{C} 2: \mathrm{C}}(\%)$	0.03	0.03	0.03	0.03
$\delta_{1 \mathrm{~B}}^{\mathrm{C} 2 \mathrm{~N}}(\%)$	-0.19	-0.19	-0.18	-0.15

The experimental values are given in ref. © 4.
packages can be found in IATEX^{2} 's tools directory.
array Various extensions to $\mathrm{IAT}_{\mathrm{E} X}$'s array and tabular environments.
longtable Automatically break tables over several pages. Put the table in the longtable environment instead of the table environment.
dcolumn Define your own type of column. Among others, this is one way to obtain alignment on the decimal point.
tabularx Smart column width calculation within a specified table width.
rotating Print a page with a wide table or figure in landscape orientation using the sidewaystable or sidewaysfigure environments, and many other rotating tricks. Use the package with the figuresright option to make all tables and figures rotate in clockwise. Use the starred form of the sideways environments to obtain full-width tables or figures in a two-column article.

3.3. Line drawings

Line drawings may consist of laser-printed graphics or professionally drawn figures attached to the manuscript page. All figures should be clearly displayed by leaving at least one line of spacing above and below them. When placing a
figure at the top of a page, the top of the figure should align with the bottom of the first text line of the other column.

Do not use too light or too dark shading in your figures; too dark a shading may become too dense while a very light shading made of tiny points may fade away during reproduction.

All notations and lettering should be no less than 2 mm high. The use of heavy black, bold lettering should be avoided as this will look unpleasantly dark when printed.

3.4. PostScript figures

Instead of providing separate drawings or prints of the figures you may also use PostScript files which are included into your thrm{E}}\)fileandprintedtogetherwiththetext.Useoneofthepackagesfrom$\mathrm{LAT}_{\mathrm{E}}$'sgraphicsdirectory:graphics,graphicxorepsfig,withthe\usepackagecommand,andthenusetheappropriatecommands(\includegraphicsor\epsfig)toincludeyourPostScriptfile.undefined

The simplest command is:
, which inserts the PostScript file file at its own size. The starred version of this command:
, does the same, but clips the figure to its bounding box.

With the graphicx package one may specify a series of options as a key-value list, e.g.:

See the file grfguide, section "Including Graphics Files", of the graphics distribution for all options and a detailed description.

The epsfig package mimicks the commands familiar from the package with the same name in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X} 2.09$. A PostScript file file is included with the command $\backslash p s f i g\{f i l e=f i l e\}$.

Grey-scale and colour photographs cannot be included in this way, since reproduction from the printed CRC article would give insufficient typographical quality. See the following subsections.

Figure 1. Good sharp prints should be used and not (distorted) photocopies.

3.5. Black and white photographs

Photographs must always be sharp originals (not screened versions) and rich in contrast. They will undergo the same reduction as the text and should be pasted on your page in the same way as line drawings.

3.6. Colour photographs

Sharp originals (not transparencies or slides) should be submitted close to the size expected in publication. Charges for the processing and printing of colour will be passed on to the

Figure 2. Remember to keep details clear and large enough.
author(s) of the paper. As costs involved are per page, care should be taken in the selection of size and shape so that two or more illustrations may be fitted together on one page. Please contact the Author Support Department at Elsevier (Email: authorsupport@elsevier.nl) for a price quotation and layout instructions before producing your paper in its final form.

4. EQUATIONS

Equations should be flush-left with the text margin; $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ ensures that the equation is preceded and followed by one line of white space. $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ provides the document class option fleqn to get the flush-left effect.
$H_{\alpha \beta}(\omega)=E_{\alpha}^{(0)}(\omega) \delta_{\alpha \beta}+\langle\alpha| W_{\pi}|\beta\rangle$
You need not put in equation numbers, since this is taken care of automatically. The equation numbers are always consecutive and are printed in parentheses flush with the right-hand margin of the text and level with the last line of the equation. For multi-line equations, use the eqnarray environment.
For complex mathematics, use the $\mathcal{A} \mathcal{M} S$ math package. This package sets the math indentation to a positive value. To keep the equations flush left, either load the espcrc package $a f$ ter the $\mathcal{A} \mathcal{M}$ Smath package or set the command
\mathindent=0pt in the preamble of your article.

REFERENCES

1. S. Scholes, Discuss. Faraday Soc. No. 50 (1970) 222.
2. O.V. Mazurin and E.A. Porai-Koshits (eds.), Phase Separation in Glass, North-Holland, Amsterdam, 1984.
3. Y. Dimitriev and E. Kashchieva, J. Mater. Sci. 10 (1975) 1419.
4. D.L. Eaton, Porous Glass Support Material, US Patent No. 3904422 (1975).

References should be collected at the end of your paper. Do not begin them on a new page unless this is absolutely necessary. They should be prepared according to the sequential numeric system making sure that all material mentioned is generally available to the reader. Use \cite to refer to the entries in the bibliography so that your accumulated list corresponds to the citations made in the text body.

Above we have listed some references according to the sequential numeric system (1)4.

[^0]: * Footnotes should appear on the first page only to indicate your present address (if different from your normal address), research grant, sponsoring agency, etc. These are obtained with the \thanks command.
 \dagger For following authors with the same address use the \addressmark command.
 \ddagger To reuse an addressmark later on, label the address with an optional argument to the \address command, e.g. \address[MCSD], and repeat the label as the optional argument to the \addressmark command, e.g. \addressmark[MCSD].

