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1. Introduction

The exotic mesons comprise a rare vehicle for the elucidation of the relatively unexplored
role of gluons in QCD. The Particle Data Group [1] reports twocandidates for the 1−+ exotic,
the π1(1400) at 1.376(17)GeV, and theπ1(1600) at 1.596+25

−14 GeV. The interpretation of the
experimental data continues to inspire discussion [2, 3].

Michael [11] provides a good summary of lattice results in this field up to 2003, concluding
that the light-quark exotic is predicted by lattice studiesto have a mass of 1.9(2) GeV, which
differs from both experimental candidates. It should be emphasised, however, that previous results
are derived from extrapolations from relatively heavy quark masses.

In order to minimize the need for extrapolation one requiresaccess to quark masses near the
chiral regime on large physical volumes. Our study considers a physical volume of(2.6 fm)3, and
theO(a)-improved FLIC fermion action [4, 5] whose improved chiral properties [6] permit the use
of very light quark masses which are key to our results.

2. Lattice Simulations

We use local interpolating fields, coupling colour-octet quark bilinears to chromo-electric and
chromo-magnetic fields. It is possible to generalise the interpolating fields to include non-local
components where link paths are incorporated to maintain gauge invariance and carry the nontrivial
quantum numbers of the gluon fields [7, 9]. Such an approach does not lead to an increase in signal
for the ground state 1−+ exotic commensurate with the increased computational costof multiple
fermion-matrix inversions.

Gauge-invariant Gaussian smearing [13, 14] is applied at the fermion source (t = 8), and local
sinks are used to maintain strong signal in the two-point correlation functions. In this work we
considered four interpolating fields for the 1−+ exotic:

χ1 = q̄aγ4Eab
j qb, (2.1)

χ2 = iε jkl q̄
aγkB

ab
l qb, (2.2)

χ3 = iε jkl q̄
aγ4γkB

ab
l qb, (2.3)

and
χ4 = ε jkl q̄

aγ5γ4γkE
ab
l qb . (2.4)

The interpolating fields which couple large-large and small-small spinor components (i.eχ2

andχ3) provide the strongest signal for the 1−+ state.
In order to obtain the chromo-electric and chromo-magneticfields with which we build the

hybrid operators, we make use of a modified version of APE smearing [15], in which the smeared
links do not involve averages which include links in the temporal direction. In this way we preserve
the notion of a Euclidean ‘time’ and avoid overlap of the creation and annihilation operators. In
this study, the smearing fractionα = 0.7 (keeping 0.3 of the original link) and the process of
smearing andSU(3) link projection is iterated four times [17]. Smearing the links permits the use
of highly improved definitions of the lattice field strength tensor, from which our hybrid operators
are derived. Details of theO(a4)-improved tensor are given in [16].
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(a) (b)

Figure 1: Effective masses extracted with interpolatorsχ2 (a) andχ3 (b).

Propagators are generated using the fat-link irrelevant clover (FLIC) fermion action [5] where
the irrelevant Wilson and clover terms of the fermion actionare constructed using APE-Smeared
links [15], while the relevant operators use the untouched (thin) gauge links. In the FLIC ac-
tion, this yields improved chiral properties and reduces the problem of exceptional configurations
encountered with clover actions [6], and minimizes the effect of renormalization on the action im-
provement terms [18]. Details of this approach may be found in reference [5]. FLIC fermions
provide a new form of nonperturbativeO(a) improvement [6, 18] where near-continuum results
are obtained at finite lattice spacing.

We use quenched-QCD gauge fields created by the CSSM Lattice Collaboration with the
O(a2) mean-field improved Lüscher-Weisz plaquette plus rectangle gauge action [19] using the
plaquette measure for the mean link. The CSSM configurationsare generated using the Cabibbo-
Marinari pseudo-heat-bath algorithm [20] using a parallelalgorithm with appropriate link par-
titioning [21]. To improve the ergodicity of the Markov chain process, the three diagonal SU(2)
subgroups of SU(3) are looped over twice [22] and a parity transformation [23] is applied randomly
to each gauge field configuration saved during the Markov chain process.

The calculations of meson masses are performed on 203
× 40 lattices atβ = 4.53, which

provides a lattice spacing ofa = 0.128(2) fm set by the Sommer parameterr0 = 0.49 fm. A fixed
boundary condition in the time direction is used for the fermions by settingUt(~x,Nt) = 0 ∀ ~x in
the hopping terms of the fermion action, with periodic boundary conditions imposed in the spatial
directions. Eight quark masses are considered in the calculations and the strange quark mass is
taken to be the third heaviest quark mass. This provides a pseudoscalar mass of 697 MeV which
compares well with the experimental value of(2M2

K −M2
π)1/2 = 693MeV motivated by leading

order chiral perturbation theory. The analysis is based on asample of 345 configurations, and the
error analysis is performed by a third-order single-elimination jackknife, with theχ2 per degree of
freedom (χ2/do f) obtained via covariance matrix fits.
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Figure 2: A survey of results in this field. Open and closed symbols denote dynamical and quenched
simulations respectively. The MILC results are taken from [8] and show theirQ4,1−+

→ 1−+ results, fitted
from t = 3 to t = 11.

Table 1: 1−+ Exotic Meson mass (GeV) vs square of pion mass (GeV2).

χ2 fit 10-11 χ2 fit 10-12 χ3 fit 10-11

m2
π m χ2/do f m χ2/do f m χ2/do f

0.693(3) 2.15(12) 0.69 2.16(11) 0.44 2.20(15) 0.45
0.595(4) 2.11(12) 0.77 2.12(11) 0.51 2.18(16) 0.46
0.488(3) 2.07(12) 0.85 2.08(12) 0.59 2.15(17) 0.41
0.381(3) 2.01(12) 0.91 2.03(12) 0.65 2.14(19) 0.29
0.284(3) 1.97(13) 0.78 1.98(13) 0.55 2.27(29) 0.0001
0.215(3) 1.92(14) 0.78 1.92(14) 0.40 2.25(31) 0.02
0.145(3) 1.85(17) 0.57 1.84(17) 1.76 2.26(37) 0.02
0.102(4) 1.80(23) 0.13 1.75(23) 3.04 2.46(58) 0.03

3. Results

Figure 1 shows the effective mass for the two preferred interpolators. For clarity, we have
plotted the results for every second quark mass used in our simulation. The effective masses exhibit
plateaus at 0.256 fm from the source which is consistent with Ref. [8], where a similar effect is
seen after approximately 0.21 to 0.28 fm.

Table 1 summarizes our results for the mass of the 1−+ meson, with the squared pion-mass
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provided as a measure of the input quark mass. The agreement between the interpolators is sig-
nificant, as we expect them to posess considerably differentexcited-state contributions, based on
experience with pseudoscalar interpolators [24].

Fig. 2 summarizes a collection of results for the mass of the 1−+ obtained in lattice QCD
simulations thus far. The current results presented herein(full triangles) are compared with results
from the MILC [8, 10] and SESAM [9] collaborations, both of which provide a consistent scale via
r0.

We perform a linear fit to the 1−+ mass using the four lightest quark masses and a quadratic
form to all 8 masses. Systematic uncertainties associated with chiral nonanalytic curvature are es-
timated at 50 MeV[26, 25]. A third-order single-elimination jackknife error analysis yields masses
of 1.74(24) and 1.74(25) GeV for the linear and quadratic fits, respectively. These results agree
within one standard deviation with the experimentalπ1(1600) result of 1.596+25

−14 GeV, and exclude
the mass of theπ1(1400) candidate.

4. Conclusion

We have found a compelling signal for theJPC = 1−+ exotic meson at very light quark masses,
from which we can extrapolate a physical mass of 1.74(24) GeV. Thus for the first time in lattice
studies, we find a 1−+ mass in agreement with theπ1(1600) candidate.

Looking forward, it will be important to quantify the effects of the quenched approximation.
Of particular interest will be the extent to which the curvature observed in approaching the chiral
regime is preserved in full QCD.

Whilst the rapidity with which we establish a plateau in our effective mass plots suggests that
our current fermion operator smearing is near optimal for isolating the ground state, it might be
possible to reduce the statistical errors through a carefulselection of parameters coming out of a
systematic exploration of the parameter space.
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