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Accessing high momentum states in lattice QCD
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Two measures are defined to evaluate the coupling strength of smeared interpolating operators to

hadronic states at a variety of momenta. Of particular interest is the extent to which strong overlap can be

obtained with individual high-momentum states. This is vital to exploring hadronic structure at high-

momentum transfers on the lattice and addressing interesting phenomena observed experimentally. We

consider a novel idea of altering the shape of the smeared operator to match the Lorentz contraction of the

probability distribution of the high-momentum state and show a reduction in the relative error of the two-

point function by employing this technique. Our most important finding is that the overlap of the states

becomes very sharp in the smearing parameters at high momenta, and fine tuning is required to ensure

strong overlap with these states.

DOI: 10.1103/PhysRevD.86.074504 PACS numbers: 12.38.Gc

I. INTRODUCTION

Lattice QCD has enjoyed great success as a tool for first-
principles, hadron-structure calculations. Early pion elec-
tromagnetic form-factor calculations [1,2] and nucleon
form-factor calculations [3–5] established the formalism
and presented first results establishing the challenges ahead
for obtaining precision form factors to confront experimen-
tal data. Nucleon form factors continue to be an active
area of research [6–13] and a comprehensive review of
recent form-factor calculations can be found in Ref. [14]
and references therein.

In practice, current lattice calculations were limited to a
momentum transfer of approximately Q2 ¼ 3 GeV2 due
to a challenge of increasing statistical errors. Recently,
calculations of the nucleon and pion form factors at
Q2 ¼ 6 GeV2 have been performed using variational tech-
niques [15]. In this paper we explore very high momentum
states and propose that, with sufficient optimization of
the smearing parameters alone, momentum transfers of
the order Q2 ¼ 10 GeV2 can be accomplished in lattice
hadron-structure calculations.

Smearing techniques have seen widespread use in many
applications in lattice QCD since first being applied to
fermion operators [16]. The most notable impacts can be
found in spectroscopy calculations using variational meth-
ods [17–22]. In spite of these successes, there has been
little in the way of the optimization of smearing parameters
for high-momenta states. For low-momenta states there is
no real need for optimization as the overlap of states is
typically slowly varying with the smearing parameters. In
the following we reveal that this is not the case for high-
momenta states, and finely tuned optimization is very
beneficial in accessing these states on the lattice.

Isolation of the ground state at high momentum is
essential to removing otherwise large and problematic
excited state contaminations. However, suppression of

excited states through Euclidean evolution alone encoun-
ters a rapid onset of statistical noise. We introduce two
different measures to quantify the coupling of a smeared
operator to the ground state of a proton relative to the
nearby excited states and show how these measures deter-
mine the optimal smeared operator for ground-state
isolation early in Euclidean time.
We also introduce anisotropy into the smeared operators

in the direction of momentum in an effort to improve
the coupling to these Lorentz-contracted high-momentum
states. Our results are complementary to the variational
techniques of Ref. [15] in that the optimal set of smearings
for accessing a variety of momenta can be combined to
create a correlation matrix providing an effective basis for
eigenstate isolation.

II. TWO-POINT FUNCTIONS

The two-point function of a baryon on the lattice in
momentum space is given by

G2ð ~p; tÞ ¼
X

x

e�ip�xh�j�iðxÞ ��ið0Þj�i; (1)

where �i and ��i annihilate and create the baryon, respec-
tively, at the sink point x and source point 0, and the index i
admits various spin-flavor structures for the interpolators.
In the case of the proton, the annihilation operator is

�1 ¼ �abcðuTaC�5dbÞuc; (2)

where u and d represent the spinors for the up and down
quarks, respectively, and C is the charge conjugation
matrix. It can be shown that, for positive parity states,

G2ð ~p; tÞ ¼
X

B

� � pþm

2EB

�Be
�EBt; (3)

where the sum over B represents the ground and excited
states of the baryon. It is common to average the (1,1) and
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(2,2) elements of the Dirac matrix where the signal for
positive parity states is large. At zero momentum, the Dirac
matrix contribution is then 1. The coefficient �B provides a
measure of the total overlap of ��i at the source and�i at the
sink with the state B. It is the product of the source and
sink overlaps which may be different if different smearings
are used at the source and the sink. In this investigation
the source will be fixed to a point source such that variation
in �B is proportional to the variation in the overlap of
�i, which will encounter a wide range of different sink
smearings.

Each state decays at a rate proportional to the expo-
nential of its energy. By evolving forward in Euclidean
time, excited state contributions die away, allowing the
ground state to be isolated. This is less than ideal for the
calculation of three-point functions that require effective
ground-state isolation close to the source to avoid large
Euclidean time evolution and an associated loss of signal.
It is for this reason that various techniques have been
implemented for earlier Euclidean-time isolation of the
ground state.

When calculating the two-point function, it is possible to
choose the momentum of the baryon. On the finite lattice,
momentum is quantized

~p ¼ 2�

NLa
ðpx; py; pzÞ; (4)

where NL is the spatial extent of the lattice, a is the lattice
spacing and px, py, pz are integers restricted to the range

� NL

2
< pi � NL

2
: (5)

Due to the construction of the discrete fermion propagator,
momentum input into the two-point function becomes
proportional to sinð ~pÞ; therefore, it is only reasonable to
consider momentum states where

jpij & NL

4
; (6)

such that the dispersion relation is approximately satisfied.

III. GAUSSIAN SMEARING

Gaussian smearing is an iterative procedure applied to
the source or sink of the two-point function in order to
improve the relative coupling to the ground state of the
particle. Consider

�iþ1ðxÞ ¼ Fðx; yÞ�iðyÞ (7)

with [16]

Fðx; yÞ ¼ ð1� �Þ�xy þ �

6

X3

�¼1

ðUy
�ðx� a�̂Þ�x�a�̂;y

þU�ðxÞ�xþa�̂;yÞ; (8)

where � is a constant, which we set to 0.7. We can
introduce anisotropy to the smearing by introducing a

new constant �x, which will act only in the x direction;
the expression for the smearing then becomes,

Fðx; yÞ ¼ ð1� �oÞ�xy þ �x

6
ðUy

1 ðx� ax̂Þ�x�ax̂;y

þU1ðxÞ�xþax̂;yÞ þ �

6

X3

�¼2

ðUy
�ðx� a�̂Þ�x�a�̂;y

þU�ðxÞ�xþa�̂;yÞ; (9)

where �o ¼ 0:7 and � and �x are normalized such that

4�þ 2�x

6
¼ �o: (10)

IV. MEASURES

In order to show improvement in the two-point function
due to operator choice, quantitative measures must be
introduced. Following the original motivation for introduc-
ing smeared sources, we consider measures that are
capable of determining the deviation from the ideal sce-
nario where the two-point function contains only the
ground state.
Gusken [16] introduced the measure

R ¼ G2ðt0Þeþm0t
0

G2ð0Þ ; (11)

for quantifying the ground-state isolation of a hadron. By
taking a point, t0, sufficiently late in time such that the
excited-state contributions become negligible, the ground

state can be evolved back to the source via eþm0t
0
to

evaluate the fraction of G2ð0Þ it holds. However, with
sufficient smearing, states can contribute negatively to
the two-point function, allowing this ratio to exceed 1
and making it difficult to interpret the results.
The first measure we introduce follows from this idea by

determining the deviation ofG2ðtÞ from the ideal two-point
function of a single ground state. It is similar, in principle,
to Gusken’s measure; however, it is capable of taking into
account the presence of states with negative coupling to the
operator. The measure, M1, is defined as

M1 ¼ �1

tf � ti þ 1

Xtf

t¼ti

ðe�E0ðt�t0Þ � ~G2ðtÞÞ2
~G2
2ðtÞ

; (12)

where ~GðtÞ ¼ GðtÞ=Gðt0Þ. The factor �1 makes this mea-
sure maximal when GðtÞ is a pure exponential of the
ground state. The energy E0 is determined from a 4� 4
source-sink-smeared variational analysis [23] of the
zero-momentum state with the correct dispersion relation
applied for finite-momentum states.
Another common method of extracting coupling effec-

tiveness is to perform a four-parameter, two-exponential
fit on a region close to the source of the two-point
function, i.e.,
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Gfit ¼ a1e
�a2t þ b1e

�b2t: (13)

However, this method tends to prove unreliable with the
parameters varying with the fit window. The method is
limited by the fact that it cannot account for any states
with higher energy than the two considered, as the energy
of the second state, and thus the residue of the pole,
becomes a superposition of all higher-energy states.

The second measure we introduce works similarly to
this. However, the parameters of the exponentials are pre-
determined by a variational analysis [23]. This leads to a
simple linear fit of known exponentials, i.e.,

Gfit ¼ �0e
�E0t þ �1e

�E1t þ �2e
�E2t: (14)

We can then find the proportion of the ith state in the two-
point function with the measure

M2;i ¼ j�ijP
k

j�kj : (15)

This measure is more ideal than directly fitting the six
parameters of a three-exponential fit as having fewer
parameters to fit allows the use of a smaller window, where
only the lightest three states are contributing. Furthermore,
the energy of the heaviest state has already been deter-
mined by the variational analysis, and therefore the �2 per
degree of freedom is constrained well and can be used to
find the appropriate fit window.

V. LATTICE DETAILS

Our calculations are performed on configurations of size
323 � 64 with a lattice spacing of 0.0907 fm provided
by the PACS-CS Collaboration [24]. These lattices have
2þ 1 sea quark flavors generated with the Iwasaki gauge
action [25] and the nonperturbatively improved Clover
fermion action [26] with the 	 values for the light quarks
and the strange quark given by 0.13 754 and 0.13 640,
respectively, and CSW ¼ 1:715. This gives a pion mass of
m� ¼ 389 MeV.

In order to eliminate any bias caused by smearing in
the source, we use a single set of propagators generated
with a point source. All of the smearing is then applied to
the sink, making the two-point functions smearing
dependent. All momentum will be in the x direction, i.e.,
py ¼ 0 and pz ¼ 0 in Eq. (4).

We use a 4� 4 correlation matrix to extract our excited
state masses, constructed from the �1 operator with 16, 35,
100 and 200 sweeps of smearing. We choose to use the
larger basis in order to ensure that the first three eigenstate
energies are accurately determined.

We have verified that no multiparticle states are present
in the variational analysis by applying the single-particle
dispersion relation to the zero-momentum effective state
masses to successfully predict the effective masses of the
same states with nonzero momentum.

Our error analysis is performed with the second-order,
single-elimination jackknife method. Linear fits are per-
formed using the normal equations with exact matrix in-
version where possible and singular value decomposition
otherwise.

VI. RESULTS

A. Isotropic smearing

We first calculate the measure from Eq. (12), where the
two-point functions have been normalized 1 time slice
after the source, with ti ¼ 1 and tf ¼ 6. The two-point

function is calculated at every sweep of sink smearing
between 1 and 480, up to an rms radius of 13.68 in lattice
units. For this particular ensemble, the two-point function
that shows the highest proportion of ground state has 136
sweeps of smearing at the sink, or an rms radius of 6.92
lattice units as seen in Fig. 1. Also apparent is that the
effectiveness of the smearing at isolating the ground state is
significantly reduced fairly close to the optimal amount of
smearing. At only 30 sweeps away from the ideal number
of sweeps, the deviation from the ideal two-point function
has increased by a factor of 10.
When we move to px ¼ 1 in Eq. (4), which gives

momentum in the x direction of 427MeV, the ideal number
of smearing sweeps reduces by just one sweep to 135 (rms
radius 6.90 lattice units), as shown in Fig. 2. This can be
explained by considering the relativistic � factor, which is
given by the ratio of the relativistic energy-momentum
relation and the ground-state mass. The fitted ground-state
mass for the proton is MP ¼ 1:273ð21Þ GeV, giving
a relativistic energy of EPjp¼1 ¼ 1:343ð23Þ GeV and � ¼
1:05. Given that all of the excited states are more massive,
and, therefore, exhibit less Lorentz contraction than the
ground state, it is feasible that there is very little difference

FIG. 1. The measure from Eq. (12) at px ¼ 0 in Eq. (4).
Deviation from the ideal two-point function increases by a factor
of 10 less than 30 sweeps from the ideal smearing level, as
shown in the inset graph.
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in the probability distribution between this state and the
zero momentum state; thus, the ideal amount of smearing
should be very similar to the zero-momentum state.

At px ¼ 3 in Fig. 2, the optimal number of smearing
sweeps has decreased to 98. The maximum value of the
measure has also decreased relative to the lower momen-
tum states, indicating relatively more excited-state con-
tamination, though still achieving good isolation. The
ratio of the rms radius of the optimal smearing for this
state to the optimal smearing for the ground state is 0.85,
compared to the relativistic ��1 factor of 0.72. At px ¼ 5,
corresponding to a momentum transfer of approximately
4:55 GeV2, shown in Fig. 3, the optimal number of sweeps
is 52 (rms radius 4.27 lattice units). However, the maxi-
mum value of the measure is close to the maximum value
for the px ¼ 3 case, indicating that very efficient isolation
is possible, even at larger momentum transfers.

Moving to px ¼ 7, equivalent to a momentum transfer
of 8:93 GeV2, there is significant noise far from the source
in the two-point function, even for highly optimized smear-
ing values. Hence, we consider tf ¼ 5 in the measure from

Eq. (12) at this value of momentum. The ideal number of

sweeps decreases to 27 sweeps, or 3.08 lattice units rms
radius, seen in Fig. 3. Notably, the deviation from the ideal
two-point function increases by a factor of 10 only 5
sweeps from this optimal value, corresponding to a change
in rms radius of less than 0.3 lattice units.
Using the measure described in Eq. (15), we first con-

sider the three exponential fit between time slices 1 and 6
after the source with masses 1.273(21), 2.301(28) and
2.786(95) GeV, as determined in our correlation matrix
analysis. From the results in Fig. 4, we can see that, in
the region where the first measure predicts ideal smearing
levels, there is a sharp change in the structure of the graph.
In order to determine the cause of this, we compare with
the fits containing only the ground and first excited states.
Figure 5 shows that the optimal number of smearing
sweeps lies close to the value predicted by the first mea-
sure. The overlap at the optimal number of sweeps, 138 in
this case, is 99.31(8)%, indicating that, in the three expo-
nential fit, we are attempting to fit two quickly decaying
exponentials using only 0.69% of the signal available. This
leads us to believe that, in the regions of ground-state
dominance where we are most interested, the coefficient

FIG. 2. The measure from Eq. (12) at px ¼ 1 (left) and px ¼ 3 (right) in Eq. (4). There is little difference between the measure at
px ¼ 0 and px ¼ 1, due to the fact that the probability distributions between the two momentum states are nearly identical. At px ¼ 3,
the rms radius of the optimal smearing level is smaller by a factor of 0.85 relative to the px ¼ 0 state, whereas the relativistic � factor
provides a Lorentz contraction factor of ��1 ¼ 0:72.

FIG. 3. The measure from Eq. (12) at px ¼ 5 (left) and px ¼ 7 (right) in Eq. (4). The value of the measure at the optimum number of
smearing sweeps for this momentum state is approximately equal to that of the px ¼ 3 state, indicating that good ground-state isolation
is possible even at higher momenta. At px ¼ 7, the deviation from the ideal two-point function has increased by a factor of 10 only 5
sweeps from the optimal smearing level, as shown in the inset graph.
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from the quickly decaying third state cannot be determined
accurately and, therefore, dominates well beyond where
it should be allowed to contribute at all. For this reason,
we will only consider fits using the ground and first excited
states.

The contamination due to excited states in the two
exponential fit at zero momentum increases rapidly away
from the optimum smearing level. Of the smearing sweeps
used to extract the masses from the variational analysis, the
one that shows the most overlap with the ground state is
200 sweeps, or an rms radius of 8.55 lattice units, with
77.69(7)%, or 32 times more excited-state contamination
than the optimal smearing level.

At the first nonzero-momentum state, the results present
similarly to the first measure, the optimal amount of smear-
ing is 1 sweep less than that of the nonzero-momentum
ground state and 2 sweeps more than the optimal amount
determined by the first measure. Atpx ¼ 3 in Eq. (4) shown
in Fig. 6, the overlap is maximized at 101 sweeps of
smearing, or an rms radius of 5.95 lattice units, once again
agreeing within only a few sweeps of the optimum level
suggested by the firstmeasure. Remarkably, considering the
use of a point source, the proportion of ground state present
at this optimal amount of smearing is 98.87(12)%.
At px ¼ 5 and px ¼ 7 in Fig. 7, there is again good

agreement between the two measures, with the optimal
smearing level being 53 and 26 sweeps, respectively.
Even at a momentum transfer of 8:93 GeV2, 97.20(20)%
overlap is achieved with the ground state, and once again,
very few sweeps from the optimum level, the overlap drops
dramatically. At px ¼ 7, far from the optimal number of
smearing sweeps, it is unlikely that any highly Lorentz
contracted state would couple to such a large sink. The
second peak in Fig. 7 can, therefore, be considered to
signify a limit to the domain of validity of the measure.

B. Anisotropic smearing

As anisotropy is introduced to the smearing as described
in Eq. (9), we consider the first measure from Eq. (12) at
the first nonzero-momentum state and find that there is
no improvement to the ground-state isolation, as shown
in Fig. 8. There is, however, an ideal number of sweeps
that increases for decreasing �x that shows approximately
equal ground-state proportion relative to the isotropic
smearing case.
At px ¼ 3 in Eq. (4), in spite of the clear difference

in the smearing sweeps required to maximize overlap
with the source, Fig. 9 shows that introducing anisotropy to
the smearing does not result in improved isolation of the

FIG. 4. Ground-state proportion from the three exponential fit
at px ¼ 0 in Eq. (4). There is insufficient information on the
second excited state close to the optimal amount of smearing,
thus requiring use of the two exponential fit to determine the
optimal amount of smearing with this measure.

FIG. 5. Ground-state proportion at px ¼ 0 in Eq. (4).
Contamination due to excited states increases rapidly away
from the optimal smearing level. There is good agreement
between the two exponential fit here and the three exponential
fit in Fig. 4 away from the optimum smearing levels.

FIG. 6. Ground state proportion at px ¼ 3 in Eq. (4). As
momentum increases, the contamination due to excited states
increases more rapidly away from the ideal smearing level.
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FIG. 7. Ground-state proportion at px ¼ 5 (left) and px ¼ 7 (right) in Eq. (4). Even at these very high-momentum transfers, good
overlap with the ground state is achieved for an optimized sink. Far from the optimal number of smearing sweeps at px ¼ 7, it is clear
that the measure is no longer applicable, as there would be little, if any, highly Lorentz contracted ground state present.
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px ¼ 1 from Eq. (4). Introducing anisotropy to the smearing does not improve the isolation of this state. However, the Lorentz
contraction is small so little improvement would be expected.
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ground state. The structure of the curve is similar to that
of the px ¼ 1 state, where there is an optimal number of
sweeps for every value of �x, which increases with
decreasing �x.

Once again, there is no improvement in the ability of
anisotropic smearing to isolate the ground state at the
momentum of px ¼ 5, as shown in Fig. 10. The structure
revealed in the lower momentum states persists for this
state and for the px ¼ 7 state in Fig. 11. From these results,
optimization of the number of smearing sweeps, alone, is
sufficient to achieve good isolation of the ground state of
the two-point function at a range of momenta.

It is perhaps worth noting that a different conclusion
would be drawn if one was to consider a single smearing
level beyond the peak at the isotropic limit. For example,
consider Fig. 10 with px ¼ 5, with the number of smear-
ing sweeps fixed at 80, the introduction of anisotropy has
a favorable effect, restoring ground-state isolation at
�x ¼ 0:12.
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FIG. 10 (color online). The first measure from Eq. (12) (left) and the ground-state proportion (right) with anisotropic smearing at
px ¼ 5 from Eq. (4). The structure observed in the plots of the px ¼ 3 state is retained, with more sweeps of smearing required as
anisotropy is increased.
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FIG. 11 (color online). The first measure from Eq. (12) (left) and the ground-state proportion (right) with anisotropic smearing at
px ¼ 7 from Eq. (4). Even at a momentum of 2.99 GeV, anisotropy in the smearing does not improve isolation of the ground state.

FIG. 12. Relative error in the two-point function measured
four time slices after the source for px ¼ 3 as in Eq. (4). At
this momentum, isotropic smearing provides the best relative
error.
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We now investigate how anisotropic smearing affects the
signal-to-noise ratio or quality of the two-point function at
high momenta. Since we have ensured that the ground
state is isolated as close to the source as possible, we
now determine the quality of the signal a few time slices
away from the source. We consider the relative error of the
two-point function four time slices after the source at the
optimal number of smearing sweeps for each value of our
anisotropy parameter, �x.

For px ¼ 3, Fig. 12 shows the two-point function at
t ¼ 4. The smallest relative error occurs when the smear-
ing is isotropic. Increasing the momentum to px ¼ 5 lattice
units shows that there is only a small improvement to the
relative error for values of �x � 0:48. It is worth noting
that the first of the minima visible in Fig. 13 at �x ¼ 0:36
corresponds to the anisotropy expected due to Lorentz
contraction as �x=� ¼ 0:51 ¼ ��1.

The banding structure visible in Fig. 13 is a result of
the optimal number of smearing sweeps increasing for
decreasing values of �x. Each discontinuity in the graph
for �x > 0:36 is the result of the optimal number of
smearing sweeps decreasing by 1. It is an artifact result-
ing from the density of the points in �x being much finer
than the density of the points in the number of smearing
sweeps.

Moving to px ¼ 7 in Fig. 13, we see a distinct improve-
ment in the correlation-function relative error when anisot-
ropy is introduced. Both�x ¼ 0:26 and 0.32 provide a 10%
reduction in the error relative to that observed at the
isotropic value of 0.7. The values of �x ’ 0:26 to 0.32
provide �x=� ¼ 0:37 to 0.46, in accord with the value of
��1 ¼ 0:39 predicted by Lorentz contraction.

VII. CONCLUSION

We have presented two new measures of the effective-
ness of smeared operators in isolating the ground state of

a hadron in the two-point function. Both measures show
good agreement with each other. We have performed a
detailed analysis of ground-state isolation with each
measure and have shown that optimization of the smear-
ing can lead to remarkable improvement to the ground-
state isolation. Furthermore, the ability to isolate the
ground state decreases dramatically a few sweeps from
the optimal number of smearing sweeps for the higher
momentum states. In selecting a basis for a correlation
matrix analysis, these optimal smearing parameters are
preferred.
On the introduction of anisotropy to the smearing, we

found that there was no appreciable improvement to the
overlap with the ground state. The relative proportion of
the ground state for an isotropic source is already high. The
introduction of anisotropy does provide a small improve-
ment to the correlation function of high-momentum states
a few Euclidean time slices after the source. Optimizing
the number of sweeps of isotropic smearing is sufficient to
ensure maximal isolation of high-momentum ground states
and ameliorates the need for considering anisotropic
operators. We note that a subsequent study considering
the effect of anisotropic operators on mesons [27] has
already appeared.
Our results indicate that future studies of high-

momentum states should adopt this relatively cheap pro-
gram of tuning the smearing sweeps to optimize isolation
and overlap with the states of interest. We anticipate this
approach will be of significant benefit in future form-factor
studies.
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FIG. 13. Relative error in the two-point function measured four time slices after the source for px ¼ 5 (left) and px ¼ 7 (right) as in
Eq. (4). At px ¼ 5, there is a small amount of improvement for anisotropic smearing at �x=� in the region of ��1 ¼ 0:51. At px ¼ 7, a
10% improvement in the relative error is seen for values of �x ’ 0:26 to 0.32, where �x=� ¼ 0:37 to 0.46, in accord with the value of
��1 ¼ 0:39 predicted by Lorentz contraction. Note that the emergent banding structure reflects a change in the optimal number of
smearing sweeps by one.
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