53 research outputs found

    Complex circular subsidence structures in tephra deposited on large blocks of ice: Varða tuff cone, Öræfajökull, Iceland

    Get PDF
    Several broadly circular structures up to 16 m in diameter, into which higher strata have sagged and locally collapsed, are present in a tephra outcrop on southwest Öræfajökull, southern Iceland. The tephra was sourced in a nearby basaltic tuff cone at Varða. The structures have not previously been described in tuff cones, and they probably formed by the melting out of large buried blocks of ice emplaced during a preceding jökulhlaup that may have been triggered by a subglacial eruption within the Öræfajökull ice cap. They are named ice-melt subsidence structures, and they are analogous to kettle holes that are commonly found in proglacial sandurs and some lahars sourced in ice-clad volcanoes. The internal structure is better exposed in the Varða examples because of an absence of fluvial infilling and reworking, and erosion of the outcrop to reveal the deeper geometry. The ice-melt subsidence structures at Varða are a proxy for buried ice. They are the only known evidence for a subglacial eruption and associated jökulhlaup that created the ice blocks. The recognition of such structures elsewhere will be useful in reconstructing more complete regional volcanic histories as well as for identifying ice-proximal settings during palaeoenvironmental investigations

    Effects of biophysical stimulation in patients undergoing arthroscopic reconstruction of anterior cruciate ligament: prospective, randomized and double blind study

    Get PDF
    Pre-clinical studies have shown that treatment by pulsed electromagnetic fields (PEMFs) can limit the catabolic effects of pro-inflammatory cytokines on articular cartilage and favour the anabolic activity of the chondrocytes. Anterior cruciate ligament (ACL) reconstruction is usually performed by arthroscopic procedure that, even if minimally invasive, may elicit an inflammatory joint reaction detrimental to articular cartilage. In this study the effect of I-ONE PEMFs treatment in patients undergoing ACL reconstruction was investigated. The study end-points were (1) evaluation of patients’ functional recovery by International Knee Documentation Committee (IKDC) Form; (2) use of non-steroidal anti-inflammatory drugs (NSAIDs), necessary to control joint pain and inflammation. The study design was prospective, randomized and double blind. Sixty-nine patients were included in the study at baseline. Follow-up visits were scheduled at 30, 60 and 180 days, followed by 2-year follow-up interview. Patients were evaluated by IKDC Form and were asked to report on the use of NSAIDs. Patients were randomized to active or placebo treatments; active device generated a magnetic field of 1.5 mT at 75 Hz. Patients were instructed to use the stimulator (I-ONE) for 4 h per day for 60 days. All patients underwent ACL reconstruction with use of quadruple hamstrings semitendinosus and gracilis technique. At baseline there were no differences in the IKDC scores between the two groups. At follow-up visits the SF-36 Health Survey score showed a statistically significant faster recovery in the group of patients treated with I-ONE stimulator (P < 0.05). NSAIDs use was less frequent among active patients than controls (P < 0.05). Joint swelling resolution and return to normal range of motion occurred faster in the active treated group (P < 0.05) too. The 2-year follow-up did not shown statistically significant difference between the two groups. Furthermore for longitudinal analysis the generalized linear mixed effects model was applied to calculate the group × time interaction coefficient; this interaction showed a significant difference (P < 0.0001) between the active and placebo groups for all investigated variables: SF-36 Health Survey, IKDC Subjective Knee Evaluation and VAS. Twenty-nine patients (15 in the active group; 14 in the placebo group) underwent both ACL reconstruction and meniscectomy; when they were analysed separately the differences in SF-36 Health Survey scores between the two groups were larger then what observed in the whole study group (P < 0.05). The results of this study show that patient’s functional recovery occurs earlier in the active group. No side effects were observed and the treatment was well tolerated. The use of I-ONE should always be considered after ACL reconstruction, particularly in professional athletes, to shorten the recovery time, to limit joint inflammatory reaction and its catabolic effects on articular cartilage and ultimately for joint preservation

    Nanomolar oxytocin synergizes with weak electrical afferent stimulation to activate the locomotor CPG of the rat spinal cord in vitro.

    Get PDF
    Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM-1 \u3bcM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other protocols, and delineate the use of oxytocin to strengthen the efficiency of electrical stimulation to activate locomotor circuits

    An auto-generated nonlinear MPC algorithm for real-time obstacle avoidance of ground vehicles

    No full text
    status: publishe
    corecore